957 research outputs found

    Time-dependent perturbations in two-dimensional String Black Holes

    Full text link
    We discuss time-dependent perturbations (induced by matter fields) of a black-hole background in tree-level two-dimensional string theory. We analyse the linearized case and show the possibility of having black-hole solutions with time-dependent horizons. The latter exist only in the presence of time-dependent `tachyon' matter fields, which constitute the only propagating degrees of freedom in two-dimensional string theory. For real tachyon field configurations it is not possible to obtain solutions with horizons shrinking to a point. On the other hand, such a possibility seems to be realized in the case of string black-hole models formulated on higher world-sheet genera. We connect this latter result with black hole evaporation/decay at a quantum level.}Comment: 11 pages, two figures,UA-NPPS.9/92; CERN-TH.6671/9

    Unstable solitons on noncommutative tori and D-branes

    Full text link
    We describe a class of exact solutions of super Yang-Mills theory on even-dimensional noncommutative tori. These solutions generalize the solitons on a noncommutative plane introduced in hep-th/0009142 that are conjectured to describe unstable D2p-D0 systems. We show that the spectrum of quadratic fluctuations around our solutions correctly reproduces the string spectrum of the D2p-D0 system in the Seiberg-Witten decoupling limit. In particular the fluctuations correctly reproduce the 0-0 string winding modes. For p=1 and p=2 we match the differences between the soliton energy and the energy of an appropriate SYM BPS state with the binding energies of D2-D0 and D4-D0 systems. We also give an example of a soliton that we conjecture describes branes of intermediate dimension on a torus such as a D2-D4 system on a four-torus.Comment: 22 pages, Latex; v.2: references adde

    Gauge invariant reduction to the light-front

    Get PDF
    The problem of constructing gauge invariant currents in terms of light-cone bound-state wave functions is solved by utilising the gauging of equations method. In particular, it is shown how to construct perturbative expansions of the electromagnetic current in the light-cone formalism, such that current conservation is satisfied at each order of the perturbation theory.Comment: 12 pages, revtex

    Index theory of one dimensional quantum walks and cellular automata

    Full text link
    If a one-dimensional quantum lattice system is subject to one step of a reversible discrete-time dynamics, it is intuitive that as much "quantum information" as moves into any given block of cells from the left, has to exit that block to the right. For two types of such systems - namely quantum walks and cellular automata - we make this intuition precise by defining an index, a quantity that measures the "net flow of quantum information" through the system. The index supplies a complete characterization of two properties of the discrete dynamics. First, two systems S_1, S_2 can be pieced together, in the sense that there is a system S which locally acts like S_1 in one region and like S_2 in some other region, if and only if S_1 and S_2 have the same index. Second, the index labels connected components of such systems: equality of the index is necessary and sufficient for the existence of a continuous deformation of S_1 into S_2. In the case of quantum walks, the index is integer-valued, whereas for cellular automata, it takes values in the group of positive rationals. In both cases, the map S -> ind S is a group homomorphism if composition of the discrete dynamics is taken as the group law of the quantum systems. Systems with trivial index are precisely those which can be realized by partitioned unitaries, and the prototypes of systems with non-trivial index are shifts.Comment: 38 pages. v2: added examples, terminology clarifie

    Measuring the Temperature of Hot Nuclear Fragments

    Full text link
    A new thermometer based on fragment momentum fluctuations is presented. This thermometer exhibited residual contamination from the collective motion of the fragments along the beam axis. For this reason, the transverse direction has been explored. Additionally, a mass dependence was observed for this thermometer. This mass dependence may be the result of the Fermi momentum of nucleons or the different properties of the fragments (binding energy, spin etc..) which might be more sensitive to different densities and temperatures of the exploding fragments. We expect some of these aspects to be smaller for protons (and/or neutrons); consequently, the proton transverse momentum fluctuations were used to investigate the temperature dependence of the source

    Convex recovery of a structured signal from independent random linear measurements

    Get PDF
    This chapter develops a theoretical analysis of the convex programming method for recovering a structured signal from independent random linear measurements. This technique delivers bounds for the sampling complexity that are similar with recent results for standard Gaussian measurements, but the argument applies to a much wider class of measurement ensembles. To demonstrate the power of this approach, the paper presents a short analysis of phase retrieval by trace-norm minimization. The key technical tool is a framework, due to Mendelson and coauthors, for bounding a nonnegative empirical process.Comment: 18 pages, 1 figure. To appear in "Sampling Theory, a Renaissance." v2: minor corrections. v3: updated citations and increased emphasis on Mendelson's contribution

    Universal physics of 2+1 particles with non-zero angular momentum

    Full text link
    The zero-energy universal properties of scattering between a particle and a dimer that involves an identical particle are investigated for arbitrary scattering angular momenta. For this purpose, we derive an integral equation that generalises the Skorniakov - Ter-Martirosian equation to the case of non-zero angular momentum. As the mass ratio between the particles is varied, we find various scattering resonances that can be attributed to the appearance of universal trimers and Efimov trimers at the collisional threshold.Comment: 6 figure

    Effect of gluon-exchange pair-currents on the ratio G(E(P))/G(M(P))

    Full text link
    The effect of one-gluon-exchange (OGE) pair-currents on the ratio μpGEp/GMp\mu_p G_E^p/G_M^p for the proton is investigated within a nonrelativistic constituent quark model (CQM) starting from SU(6)×O(3)SU(6) \times O(3) nucleon wave functions, but with relativistic corrections. We found that the OGE pair-currents are important to reproduce well the ratio μpGEp/GMp\mu_p G_E^p/G_M^p. With the assumption that the OGE pair-currents are the driving mechanism for the violation of the scaling law we give a prediction for the ratio μnGEn/GMn\mu_n G_E^n/G_M^n of the neutron.Comment: 5 pages, 4 figure

    Convenient Versus Unique Effective Action Formalism in 2D Dilaton-Maxwell Quantum Gravity

    Full text link
    The structure of one-loop divergences of two-dimensional dilaton-Maxwell quantum gravity is investigated in two formalisms: one using a convenient effective action and the other a unique effective action. The one-loop divergences (including surface divergences) of the convenient effective action are calculated in three different covariant gauges: (i) De Witt, (ii) Ω\Omega-degenerate De Witt, and (iii) simplest covariant. The on-shell effective action is given by surface divergences only (finiteness of the SS-matrix), which yet depend upon the gauge condition choice. Off-shell renormalizability is discussed and classes of renormalizable dilaton and Maxwell potentials are found which coincide in the cases of convenient and unique effective actions. A detailed comparison of both situations, i.e. convenient vs. unique effective action, is given. As an extension of the procedure, the one-loop effective action in two-dimensional dilaton-Yang-Mills gravity is calculated.Comment: 25 pages, LaTeX file, HUPD-93-0
    corecore