25,818 research outputs found

    Probabilistic teleportation of unknown two-particle state via POVM

    Full text link
    We propose a scheme for probabilistic teleportation of unknown two-particle state with partly entangled four-particle state via POVM. In this scheme the teleportation of unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.Comment: 5 pages, no figur

    A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties

    Full text link
    We propose a simultaneous quantum secure direct communication scheme between one party and other three parties via four-particle GHZ states and swapping quantum entanglement. In the scheme, three spatially separated senders, Alice, Bob and Charlie, transmit their secret messages to a remote receiver Diana by performing a series local operations on their respective particles according to the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell measurement results, Diana can infer the secret messages. If a perfect quantum channel is used, the secret messages are faithfully transmitted from Alice, Bob and Charlie to Diana via initially shared pairs of four-particle GHZ states without revealing any information to a potential eavesdropper. As there is no transmission of the qubits carrying the secret message in the public channel, it is completely secure for the direct secret communication. This scheme can be considered as a network of communication parties where each party wants to communicate secretly with a central party or server.Comment: 4 pages, no figur

    Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device

    Full text link
    We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. The device is made from an epitaxially grown InSb nanowire with two superconductor Nb contacts on a Si/SiO2_2 substrate. At low temperatures, a quantum dot is formed in the segment of the InSb nanowire between the two Nb contacts and the two Nb contacted segments of the InSb nanowire show superconductivity due to the proximity effect. At zero magnetic field, well defined Coulomb diamonds and the Kondo effect are observed in the charge stability diagram measurements in the Coulomb blockade regime of the quantum dot. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed in the same Coulomb blockade regime. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with the signatures of Majorana fermion physics in a nanowire based topological superconductor-quantum dot-topological superconductor system, in which the two Majorana bound states adjacent to the quantum dot are hybridized into a pair of quasi-particle states with finite energies and the other two Majorana bound states remain as the zero-energy modes located at the two ends of the entire InSb nanowire.Comment: 6 pages, 4 figure

    Effect of initial-state geometric configurations on the nuclear liquid-gas phase transition

    Full text link
    Within the framework of an extended quantum molecular dynamics model, we simulated 40^{40}Ca + 16^{16}O collisions at beam energies ranging from 60 to 150 MeV/nucleon for 16^{16}O with different α\alpha-cluster configurations. Results imply that different α\alpha-cluster configurations lead to different yields of deuteron, triton, 3^3He and 4^4He, but not for proton and neutron. We discuss the effect of geometric fluctuations which are presented by double ratios of light nuclei, namely Op-d-t\mathcal{O}_\text{p-d-t} and Op-d-He\mathcal{O}_\text{p-d-He}. It is found that magnitude hierarchy of geometric fluctuations is chain, kite, square and tetrahedron structure of 16^{16}O. Op-d-t\mathcal{O}_\text{p-d-t} has maximum value around 80 -- 100 MeV/nucleon which could be related to liquid-gas phase transition, that is consistent with results from the charge distribution of the heaviest fragments in the collisions.Comment: 10 pages, 8 figure

    The Least-core and Nucleolus of Path Cooperative Games

    Full text link
    Cooperative games provide an appropriate framework for fair and stable profit distribution in multiagent systems. In this paper, we study the algorithmic issues on path cooperative games that arise from the situations where some commodity flows through a network. In these games, a coalition of edges or vertices is successful if it enables a path from the source to the sink in the network, and lose otherwise. Based on dual theory of linear programming and the relationship with flow games, we provide the characterizations on the CS-core, least-core and nucleolus of path cooperative games. Furthermore, we show that the least-core and nucleolus are polynomially solvable for path cooperative games defined on both directed and undirected network

    Observing Pulsars with a Phased Array Feed at the Parkes Telescope

    Full text link
    During February 2016, CSIRO Astronomy and Space Science and the Max-Planck-Institute for Radio Astronomy installed, commissioned and carried out science observations with a phased array feed (PAF) receiver system on the 64m diameter Parkes radio telescope. Here we demonstrate that the PAF can be used for pulsar observations and we highlight some unique capabilities. We demonstrate that the pulse profiles obtained using the PAF can be calibrated and that multiple pulsars can be simultaneously observed. Significantly, we find that an intrinsic polarisation leakage of -31dB can be achieved with a PAF beam offset from the centre of the field of view. We discuss the possibilities for using a PAF for future pulsar observations and for searching for fast radio bursts with the Parkes and Effelsberg telescopes.Comment: 10 pages, 8 figures, 2 tables. It has been accepted for publication in PAS

    Quantum secure direct communication network with superdense coding and decoy photons

    Full text link
    A quantum secure direct communication network scheme is proposed with quantum superdense coding and decoy photons. The servers on a passive optical network prepare and measure the quantum signal, i.e., a sequence of the dd-dimensional Bell states. After confirming the security of the photons received from the receiver, the sender codes his secret message on them directly. For preventing a dishonest server from eavesdropping, some decoy photons prepared by measuring one photon in the Bell states are used to replace some original photons. One of the users on the network can communicate any other one. This scheme has the advantage of high capacity, and it is more convenient than others as only a sequence of photons is transmitted in quantum line.Comment: 6 pages, 2 figur
    • …
    corecore