3,966 research outputs found

    Effects of Ru Substitution on Dimensionality and Electron Correlations in Ba(Fe_{1-x}Ru_x)_2As_2

    Full text link
    We report a systematic angle-resolved photoemission spectroscopy study on Ba(Fe1−x_{1-x}Rux_x)2_2As2_2 for a wide range of Ru concentrations (0.15 ≤\leq \emph{x} ≤\leq 0.74). We observed a crossover from two-dimension to three-dimension for some of the hole-like Fermi surfaces with Ru substitution and a large reduction in the mass renormalization close to optimal doping. These results suggest that isovalent Ru substitution has remarkable effects on the low-energy electron excitations, which are important for the evolution of superconductivity and antiferromagnetism in this system.Comment: 4 pages, 4 figure

    One-stage deep instrumental variable method for causal inference from observational data

    Full text link
    © 2019 IEEE. Causal inference from observational data aims to estimate causal effects when controlled experimentation is not feasible, but it faces challenges when unobserved confounders exist. The instrumental variable method resolves this problem by introducing a variable that is correlated with the treatment and affects the outcome only through the treatment. However, existing instrumental variable methods require two stages to separately estimate the conditional treatment distribution and the outcome generating function, which is not sufficiently effective. This paper presents a one-stage approach to jointly estimate the treatment distribution and the outcome generating function through a cleverly designed deep neural network structure. This study is the first to merge the two stages to leverage the outcome to the treatment distribution estimation. Further, the new deep neural network architecture is designed with two strategies (i.e., shared and separate) of learning a confounder representation account for different observational data. Such network architecture can unveil complex relationships between confounders, treatments, and outcomes. Experimental results show that our proposed method outperforms the state-of-the-art methods. It has a wide range of applications, from medical treatment design to policy making, population regulation and beyond

    First feeding of Atlantic bluefin tuna (Thunnus thynnus) with copepods (Acartia tonsa) or rotifers /artemia - larval prey size preferences, growth, and development

    Get PDF
    The increase of dry weight, standard length and low incidence of skeletal anomalies clearly show that A. tonsa represents an optimal live food organism for tuna larvae

    BONE DEVELOPMENT IN ATLANTIC BLUEFIN TUNA Thunnus thynnus AND SKELETAL EFFECTS OF FIRST FEEDING WITH COPEPODS Acartia tonsa OR ROTIFERS Brachionus ibericus

    Get PDF
    Juvenile production of Atlantic bluefin tuna (Thunnus thynnus) is characterized by high mortalities and low growth rates during the larval stage. Startfeeding of Bluefin tuna larvae in hatcheries depends on the traditional food organisms rotifers and Artemia nauplii (Biswas et al., 2006), and skeletal malformations have been observed in 70% of larvae and juveniles (Libert et al., 2013). When copepods are used as live food, the results are generally improved compared to the use of traditional live feed organisms (Evjemo et al., 2003), with higher survival, increased growth, normal development, earlier onset of ossification and less skeletal anomalies compared to larvae fed rotifers and Artemia (Imsland et al., 2006). The aims of this study were to describe the bone development in the Atlantic Bluefin tuna fed copepods, and to evaluate the effects of start-feeding with enriched rotifers or with cultivated copepods on skeletal deformities

    Energy landscapes, supergraphs, and "folding funnels" in spin systems

    Full text link
    Dynamical connectivity graphs, which describe dynamical transition rates between local energy minima of a system, can be displayed against the background of a disconnectivity graph which represents the energy landscape of the system. The resulting supergraph describes both dynamics and statics of the system in a unified coarse-grained sense. We give examples of the supergraphs for several two dimensional spin and protein-related systems. We demonstrate that disordered ferromagnets have supergraphs akin to those of model proteins whereas spin glasses behave like random sequences of aminoacids which fold badly.Comment: REVTeX, 9 pages, two-column, 13 EPS figures include

    B Physics at the Tevatron: Run II and Beyond

    Full text link
    This report provides a comprehensive overview of the prospects for B physics at the Tevatron. The work was carried out during a series of workshops starting in September 1999. There were four working groups: 1) CP Violation, 2) Rare and Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and Spectroscopy. The report also includes introductory chapters on theoretical and experimental tools emphasizing aspects of B physics specific to hadron colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a Summary.Comment: 583 pages. Further information on the workshops, including transparencies, can be found at the workshop's homepage: http://www-theory.lbl.gov/Brun2/. The report is also available in 2-up http://www-theory.lbl.gov/Brun2/report/report2.ps.gz or chapter-by-chapter http://www-theory.lbl.gov/Brun2/report

    Strong tuning of Rashba spin orbit interaction in single InAs nanowires

    Full text link
    A key concept in the emerging field of spintronics is the gate voltage or electric field control of spin precession via the effective magnetic field generated by the Rashba spin orbit interaction. Here, we demonstrate the generation and tuning of electric field induced Rashba spin orbit interaction in InAs nanowires where a strong electric field is created either by a double gate or a solid electrolyte surrounding gate. In particular, the electrolyte gating enables six-fold tuning of Rashba coefficient and nearly three orders of magnitude tuning of spin relaxation time within only 1 V of gate bias. Such a dramatic tuning of spin orbit interaction in nanowires may have implications in nanowire based spintronic devices.Comment: Nano Letters, in pres
    • …
    corecore