43,644 research outputs found
Robust filtering with randomly varying sensor delay: The finite-horizon case
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we consider the robust filtering problem for discrete time-varying systems with delayed sensor measurement subject to norm-bounded parameter uncertainties. The delayed sensor measurement is assumed to be a linear function of a stochastic variable that satisfies the Bernoulli random binary distribution law. An upper bound for the actual covariance of the uncertain stochastic parameter system is derived and used for estimation variance constraints. Such an upper bound is then minimized over the filter parameters for all stochastic sensor delays and admissible deterministic uncertainties. It is shown that the desired filter can be obtained in terms of solutions to two discrete Riccati difference equations of a form suitable for recursive computation in online applications. An illustrative example is presented to show the applicability of the proposed method
On the tau-functions of the Degasperis-Procesi equation
The DP equation is investigated from the point of view of
determinant-pfaffian identities. The reciprocal link between the
Degasperis-Procesi (DP) equation and the pseudo 3-reduction of the
two-dimensional Toda system is used to construct the N-soliton solution of the
DP equation. The N-soliton solution of the DP equation is presented in the form
of pfaffian through a hodograph (reciprocal) transformation. The bilinear
equations, the identities between determinants and pfaffians, and the
-functions of the DP equation are obtained from the pseudo 3-reduction of
the two-dimensional Toda system.Comment: 27 pages, 4 figures, Journal of Physics A: Mathematical and
Theoretical, to be publishe
Unambiguous Acquisition and Tracking Technique for General BOC Signals
This article presents a new unambiguous acquisition and tracking technique for general Binary Offset Carrier (BOC) ranging signals, which will be used in modern GPS, European Galileo system and Chinese BeiDou system. The test criterion employed in this technique is based on a synthesized correlation function which completely removes positive side peaks while keeping the sharp main peak. Simulation results indicate that the proposed technique completely removes the ambiguity threat in the acquisition process while maintaining relatively higher acquisition performance for low order BOC signals. The potential false lock points in the tracking phase for any order BOC signals are avoided by using the proposed method. Impacts of thermal noise and multipath on the proposed technique are investigated; the simulation results show that the new method allows the removal of false lock points with slightly degraded tracking performance. In addition, this method is convenient to implement via logic circuits
Recommended from our members
Experimental and Numerical Investigation on Progressive Collapse Resistance of Post-tensioned Precast Concrete Beam-Column Sub-assemblages
In this paper, four 1/2 scaled precast concrete (PC) beam-column sub-assemblages with high performance connection were tested under push-down loading procedure to study the load resisting mechanism of PC frames subjected to different column removal scenarios. The parameters investigated include the location of column removal and effective prestress in tendons. The test results indicated that the failure modes of unbonded post-tensioned precast concrete (PTPC) frames were different from that of reinforced concrete (RC) frames: no cracks formed in the beams and wide opening formed near the beam to column interfaces. For specimens without overhanging beams, the failure of side column was eccentric compression failure. Moreover, the load resisting mechanisms in PC frames were significantly different from that of RC frames: the compressive arch action (CAA) developed in concrete during column removal was mainly due to actively applied pre-compressive stress in the concrete; CAA will not vanish when severe crush in concrete occurred. Thus, it may provide negative contribution for load resistance when the displacement exceeds one-beam depth; the tensile force developed in the tendons could provide catenary action from the beginning of the test. Moreover, to deeper understand the behavior of tested specimens, numerical analyses were carried out. The effects of concrete strength, axial compression ratio at side columns, and loading approaches on the behavior of the sub-assemblages were also investigated based on validated numerical analysis
TeV Scale Lee-Wick Fields out of Large Extra Dimensional Gravity
We study the gravitational corrections to the Maxwell, Dirac and Klein-Gorden
theories in the large extra dimension model in which the gravitons propagate in
the (4+n)-dimensional bulk, while the gauge and matter fields are confined to
the four-dimensional world. The corrections to the two-point Green's functions
of the gauge and matter fields from the exchanges of virtual Kaluza-Klein
gravitons are calculated in the gauge independent background field method. In
the framework of effective field theory, we show that the modified one-loop
renormalizable Lagrangian due to quantum gravitational effects contains a TeV
scale Lee-Wick partner of every gauge and matter field as extra degrees of
freedom in the theory. Thus the large extra dimension model of gravity provides
a natural mechanism to the emergence of these exotic particles which were
recently used to construct an extension of the Standard Model.Comment: 17 pages, 3 figures, references added, to appear in Phys. Rev.
Thermodynamic of the Ghost Dark Energy Universe
Recently, the vacuum energy of the QCD ghost in a time-dependent background
is proposed as a kind of dark energy candidate to explain the acceleration of
the Universe. In this model, the energy density of the dark energy is
proportional to the Hubble parameter , which is the Hawking temperature on
the Hubble horizon of the Friedmann-Robertson-Walker (FRW) Universe. In this
paper, we generalized this model and choice the Hawking temperature on the
so-called trapping horizon, which will coincides with the Hubble temperature in
the context of flat FRW Universe dominated by the dark energy component. We
study the thermodynamics of Universe with this kind of dark energy and find
that the entropy-area relation is modified, namely, there is an another new
term besides the area term.Comment: 8 pages, no figure
- …