68 research outputs found

    On the Empirics of Reserve Requirements and Economic Growth

    Get PDF
    Reserve requirements, as a tool of macroprudential policy, have been increasingly employed since the outbreak of the great financial crisis. We conduct an analysis of the effect of reserve requirements in tranquil and crisis times on long-run growth rates of GDP per capita and credit (%GDP) making use of Bayesian model averaging methods. Regulation has on average a negative effect on GDP in tranquil times, which is only partly offset by a positive (but not robust effect) in crisis times. Credit over GDP is positively affected by higher requirements in the longer run

    Extra-Intestinal Manifestations of Familial Adenomatous Polyposis

    Get PDF
    Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disorder, which results from a germ line mutation in the APC (adenomatous polyposis coli) gene. FAP is characterized by the formation of hundreds to thousands of colorectal adenomatous polyps. Although the development of colorectal cancer stands out as the most prevalent complication, FAP is a multisystem disorder of growth. This means, it is comparable to other diseases such as the MEN syndromes, Von Hippel-Lindau disease and neurofibromatosis. However, the incidence of many of its clinical features is much lower. Therefore, a specialized multidisciplinary approach to optimize health care—common for other disorders—is not usually taken for FAP patients. Thus, clinicians that care for and counsel members of high-risk families should have familiarity with all the extra-intestinal manifestations of this syndrome. FAP-related complications, for which medical attention is essential, are not rare and their estimated lifetime risk presumably exceeds 30%. Affected individuals can develop thyroid and pancreatic cancer, hepatoblastomas, CNS tumors (especially medulloblastomas), and various benign tumors such as adrenal adenomas, osteomas, desmoid tumors and dental abnormalities. Due to improved longevity, as a result of better prevention of colorectal cancer, the risk of these clinical problems will further increase

    Role of Surgery in Patients older than 18 months with localized Neuroblastoma (Stage 1-3)

    No full text

    Hepatocyte growth factor protects hepatoblastoma cells from chemotherapy-induced apoptosis by AKT activation

    No full text
    Hepatocyte growth factor/scatter factor (HGF) is a ubiquitously expressed molecule that elicits pleiotropic functions on epithelial cells, including mitogenic, motogenic, differentiating, angiogenic and morphogenic effects. In hepatoblastoma (HB), post-operative residual tumor growth and tumor recurrences are often associated with markedly elevated serum levels of HGF, suggesting a link between this molecule and tumor malignancy. Here, we demonstrate that HGF has no impact on overall cell viability and proliferation of HB cells, although signal transduction occurs downstream of HGF, such as c-Met phosphorylation, activation of phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK)/ERK-1/2 signaling. Instead of being mitogenic, HGF confers anti-apoptotic properties upon serum starvation and moreover protects HB cells against strong apoptotic inducers such as cisplatin and camptothecin, thereby contributing to chemotherapeutic resistance. This effect is mainly dependent on the PI3K/AKT signaling pathway, since inhibition by wortmannin resulted in abrogation of HGF-mediated survival, whereas inhibition of the MAPK pathway had no effect. Together, these findings highlight the importance of HGF in tumor cell survival and suggest that HGF and its cognate receptor c-Met should be considered as a candidate for combined therapeutic strategies of advanced pediatric liver tumors

    Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail

    No full text
    Hepatocyte growth factor/scatter factor (HGF) exerts several functions in physiological and pathological processes, among them the induction of epithelial cell scattering and motility. Its pivotal role in angiogenesis, tumor progression, and metastasis is evident; however, the underlying molecular mechanisms are still poorly understood. Here, we demonstrate that HGF induces scattering of epithelial cells by upregulating the expression of Snail, a transcriptional repressor involved in epithelial–mesenchymal transition (EMT). Snail is required for HGF-induced cell scattering, since shRNA-mediated ablation of Snail expression prevents this process. HGF-induced upregulation of Snail transcription involves activation of the mitogen-activated protein kinase (MAPK) pathway and requires the activity of early growth response factor-1 (Egr-1). Upon induction by Egr-1, Snail represses the expression of E-cadherin and claudin-3 genes. It also binds to the Egr-1 promoter and represses Egr-1 transcription, thereby establishing a negative regulatory feedback loop. These findings indicate that Snail upregulation by HGF is mediated via the MAPK/Egr-1 signaling pathway and that both Snail and Egr-1 play a critical role in HGF-induced cell scattering, migration, and invasion
    corecore