54 research outputs found

    Responsive Production in Manufacturing: A Modular Architecture

    Full text link
    [EN] This paper proposes an architecture aiming at promoting the convergence of the physical and digital worlds, through CPS and IoT technologies, to accommodate more customized and higher quality products following Industry 4.0 concepts. The architecture combines concepts such as cyber-physical systems, decentralization, modularity and scalability aiming at responsive production. Combining these aspects with virtualization, contextualization, modeling and simulation capabilities it will enable self-adaptation, situational awareness and decentralized decision-making to answer dynamic market demands and support the design and reconfiguration of the manufacturing enterprise.The research leading to these results has received funding from the European Union H2020 project C2 NET (FoF-01-2014) nr 636909.Marques, M.; Agostinho, C.; Zacharewicz, G.; Poler, R.; Jardim-Goncalves, R. (2018). Responsive Production in Manufacturing: A Modular Architecture. Studies in Systems, Decision and Control. 140:231-254. https://doi.org/10.1007/978-3-319-78437-3_10S231254140European Commission: For a European Industrial Renaissance, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions (2014)Hartmann, B., King, W.P., Narayanan, S.: Digital manufacturing: the revolution will be virtualized. McKinsey & Company (2015)European Forum for Manufacture: Driving Innovation and Growth in European Manufacturing (2015)European Factories of the Future Research Association (EFFRA): Factories of the Future: Multi-annual Roadmap for the Contractual PPP under the Horizon 2020 (2013)European Commission: Horizon 2020—Work Programme 2016–2017: 17. Cross-cutting Activities (2016)Schlaepfer, R.C., Koch, M., Merkofer, P.: Industry 4.0 challenges and solutions for the digital transformation and use of exponential technologies. Deloitte AG (2015)7iD: Industry 4.0. https://www.7id.com/technology/industry-4-0/ (2016)European Commission: Horizon 2020—Work Program 2016-2017—Cross-cutting Activities, 25 July 2016EFFRA: Factories of the Future: Multi-annual Roadmap for the Contractual PPP under the Horizon 2020 (2013)FInES Research Roadmap Task Force (2012)Jacinto, J.: Smart manufacturing? Industry 4.0? What’s it all about? Siements Totally Integrated Automation, Automation World & Design World (2014)Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP 17, 9–13 (2014)Adolphs, P.: RAMI 4.0—An architectural Model for Industrie 4.0. Platform Industrie 4.0 (2015)Collins, M.: Why America has a shortage of skilled workers. Industry Week (2015)Forbes, J., Naujok, N., Geissbauer, R., Vedso, J., Schrauf, S.: Industry 4.0: building the digital enterprise. PWC (2016)World Economic Forum Industrial Internet Survey (2014)Chen, D., Vernadat, F.B.: Enterprise interoperability: a standardisation view. Enterprise Inter- and Intra-Organizational Integration, Volume 108 of the series IFIP—The International Federation for Information Processing, pp. 273–282 (2003)Yan, L., Li, Z., Yuan, X.: Study on method-of-robust-multidisciplinary-design-collaborative-decision for product design. Inf. Technol. J. 8(4), 441–452 (2009)Ruiz Dominguez, G. A.: Caractérisation de l’activité de conception collaborative à distance: étude des effets de synchronisation cognitive (2005)Jung, J.J.: Reusing ontology mappings for query routing in semantic peer-to-peer environment. Inf. Sci. (2010). https://doi.org/10.1016/j.ins.2010.04.018Ranjan, R., Zhao, L., Wu, X., Liu, A., Quiroz, A., Parashar, M.: Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing. https://doi.org/10.1007/978-1-84996-241-4_12Agostinho, C., Pinto, P., Jardim-goncalves, R.: Dynamic adaptors to support model-driven interoperability and enhance sensing enterprise networks. In: 19th World Congress of the International Federation of Automatic Control (IFAC’14), Cape Town, South Africa (2014)Chen, D., Doumeingts, G., Vernadat, F.: Architectures for enterprise integration and interoperability: past, present and future. Comput. Ind. 59, 647–659 (2008). https://doi.org/10.1016/j.compind.2007.12.016Ducq, Y., Chen, D., Alix, T.: Principles of servitization and definition of an architecture for model driven service system engineering. In: 4th International IFIP Working Conference on Enterprise Interoperability (IWEI 2012), Harbin, China, 2012. https://doi.org/10.1007/978-3-642-33068-17_12Elvesæter, B., Hahn, A., Berre, A., Neple, T.: Towards an interoperability framework for model-driven development of software systems. In: 1st International Conference on Interoperability Enterprise Software and Applications. Springer. http://www.springerlink.com/index/L10NU4306N054T6G.pdf (2005)OMG: MDA Guide Version 1.0.1 (omg/2003-06-01), Object Management Group. http://www.omg.org/cgibin/doc?omg/03-06-01.pdf (2003)Agostinho, C., Ducq, Y., Zacharewicz, G., Sarraipa, J., Lampathaki, F., Poler, R., Jardim-Goncalves, R.: Towards a sustainable interoperability in networked enterprise information systems: trends of knowledge and model-driven technology. Comput. Ind. (2015). https://doi.org/10.1016/j.compind.2015.07.001Santucci, G., Martinez, C., Vlad-câlcic, D.: The sensing enterprise. In: FInES Work. FIA 2012, Aalborg, Denmark. http://www.theinternetofthings.eu/sites/default/files/%5Buser-name%5D/Sensing-enterprise.pdf (2012)Sriram, R.: Smart networked systems and societies: what will the future look like? In: IEEE IT Professional Conference (IT Pro). IEEE Computer Society (2014)Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., et al.: Big data: the next frontier for innovation, competition, and productivity. http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation (2011)Zacharewicz, G., Diallo, S., Ducq, Y., Agostinho, C., Jardim-Goncalves, R., Bazoun, H., Wang, Z., Doumeingts, G.: Model-based approaches for interoperability of next generation enterprise information systems: state of the art and future challenges. Inf. Syst. e-Bus. Manag. (2016). https://doi.org/10.1007/s10257-016-0317-8Jardim-Goncalves, R., Agostinho, C., Steiger-Garcao, A.: A reference model for sustainable interoperability in networked enterprises: towards the foundation of EI science base. Int. J. Comput. Integr. Manuf. 25(10) (2012). (Special Issue on Collaborative Manufacturing and Supply Chains). https://doi.org/10.1080/0951192x.2011.653831Schatsky, D., Muraskin, C.: Blockchain is coming to disrupt your industry. Deloitte (2015)Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: International Conference on Wireless Communications and Signal Processing, pp. 1–6 (2011)Rajkumar, R.: Workshop report on foundations for innovation in cyber-physical systems. NIST. http://www.nist.gov/el/upload/CPS-WorkshopReport-1-30-13-Final.pdf/ (2013)Lee, J., Lapira, E., Yang, S. Kao, H.-A.: Predictive manufacturing system trends of next generation production systems. In: 11th IFAC Workshop on Intelligent Manufacturing Systems, vol. 11, issue 1, pp. 150–156 (2013)IDC: The digital universe of opportunities: rich data and increasing value of the internet of things. EMC Digital Universe. emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf . (2014)Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 1–6 (2011)Lee, J., Bagheri, B., Kao, H.-A.: A cyber physical systems architecture for Industry 4.0-based manufacturing system. Manuf. Lett. 2015, 3, 18–23 (2014). https://doi.org/10.1016/j.mfglet.2014.12.001Bagheri, B., Lee, J.: Big future for cyber-physical manufacturing systems. Design World. http://www.designworldonline.com/big-future-for-cyber-physical-manufacturing-systems/ (2015)Lucke, D., Constantinescu, C., Westkämper, E.: Smart factory-a step towards the next generation of manufacturing. Manufacturing Systems and Technologies for the New Frontier, pp. 115–118. Springer, London (2008)Weiser, M.: The Computer for the 21st Century. Scientific American, Special Issue on Communications. Comput. Netw. (1991)Westkämper, E., Jendoubi, L., Eissele, M., Ertl, T.: Smart factory—bridging the gap between digital planning and reality. Manuf. Syst. 35(4), 307–314 (2006)Goryachev, A., Kozhevnikov, S., Kolbova, E., Kuznetsov, O., Simonova, E., Skobelev, P., Tsarev, A., Shepilov, Y.: Smart factory: intelligent system for workshop resource allocation, scheduling, optimization and controlling in real time. Adv. Mater. Res. 630, 508–513 (2012)Agostinho, C., Marques-Lucena, C., Sesana, M., Felic, A., Fischer, K., Rubattino, C., Sarraipa, J.: Osmosis process development for innovative product design and validation. 2015 ASME IMECE, Houston, USA (2015)Ko, J., Lee, B., Lee, K., Hong, S.G., Kim, N., Paek, J.: Sensor virtualization module: virtualizing IoT devices on mobile smartphones for effective sensor data management. Int. J. Distrib. Sens. Netw. (2015). https://doi.org/10.1155/2015/730762Guo, T., Papaioannou, T.G., Aberer, K.: Efficient indexing and query processing of model-view sensor data in the cloud. J. Big Data Res. 1, 52–65 (2014)Kumra, S., Sharma, L., Khanna, Y., Chattri, A.: Analysing an industrial automation pyramid and providing service oriented architecture. Int. J. Eng. Trends Technol. 3(5), 586–594 (2012)Endsley, M.: Design and evaluation for situational awareness enhancement. In: Proceedings of the Human Factors Society 32nd Annual Meeting. HFES, Santa Monica, pp. 97–10 (1988)Stanton, N.A., Chambers, P.R., Piggott, J.: Situational awareness and safety. Saf. Sci. 39(3), 189–204 (2001)Endsley, M.: Toward a theory of situation awareness in dynamic systems. Hum. Factors (The Journal of the Human Factors and Ergonomics Society) 37, 32–64 (1995)Bedny, G., Meister, D.: Theory of activity and situation awareness. Int. J. Cogn. Ergon. 3(1), 63–72 (1999)Smith, K., Hancock, P.A.: Situation awareness is adaptive, externally directed consciousness. Hum. Factors (The Journal of the Human Factors and Ergonomics Society) 37(1), 137–148 (1995)Ranganathan, A., Campbell, R.H.: An infrastructure for context-awareness based on first order logic. Pers. Ubiquit. Comput. 7(6), 353–364 (2003)Ning, K., Scholze, S., Marques, M., Campos, A, Neves-Silva, R. O’Sullivan, D.: A service oriented platform for context aware knowledge enhancing. In: 5th IFAC Conference on Management and Control of Production and Logistics (2010)Marques, M., Sucic, B., Vuk, T.: Context-based decision support for sustainable optimization of energy consumption. KES Trans. Sustain. Des. Manuf. 1(1), 899–910 (2014)Schneeweiss, C.: Distributed decision making in supply chain management. Int. J. Product. Econ. 84, 71–83 (2003)Alemany, M.M.E., Alarcón, F., Lario, F.C., Boj, J.J.: An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning. Comput. Ind. 62(5), 519–540 (2011). https://doi.org/10.1016/j.compind.2011.02.002Hong, I.H., Ammons, J.C., Realff, M.J.: Centralized versus decentralized decision-making for recycled material flows. Environ. Sci. Technol. 42(4), 1172–1177 (2008)Pibernik, R., Sucky, E.: An approach to inter-domain master planning in supply chains. Int. J. Product. Econ. 108, 200–212 (2007). https://doi.org/10.1016/j.ijpe.2006.12.010Lee, H., Whang, S.: Decentralized multi-echelon supply chains: incentives and information. Manag. Sci. 45(5), 633–640 (1999)Jung, H., Chen, F., Jeong, B.: Decentralized supply chain planning framework for third party logistics partnership. Comput. Ind. Eng. 55(2), 348–364 (2008). https://doi.org/10.1016/j.cie.2007.12.017Wang, K.-J., Chen, M.-J.: Cooperative capacity planning and resource allocation by mutual outsourcing using ant algorithm in a decentralized supply chain. Expert Syst. Appl. 36(2), 2831–2842 (2009)Simon, H.A.: The Science of the Artificial, 1st edn. MIT Press, Cambridge, Mass, (1969). (3rd ed. in 1996, MIT Press)Mesarovic, M.D., Masko, D., Takahara, Y.: Theory of Hierarchical Multilevel Systems. Academic Press, New York and London (1970)Camarinha-Matos, L.M., Afsarmanesh, H.J.: Collaborative networks: a new scientific discipline. J. Intell. Manuf. 16(4), 439–452 (2005)Popplewell, K., Stojanovic, N., Abecker, A., Apostolou, D., Mentzas, G., Harding, J.: Supporting adaptive enterprise collaboration through semantic knowledge services. In: Enterprise Interoperability Iii: New Challenges and Industrial Approaches, pp. 381–393 (2008). http://doi.org/10.1007/978-1-84800-221-0_30Agostinho, C., Ducq, Y., Zacharewicz, G., Sarraipa, J., Lampathaki, F., Jardim-Goncalves, R., Poler, R.: Towards a sustainable interoperability in networked enterprise information systems: trends of knowledge and model-driven technology. Accepted for Publication at Computers in Industry. http://doi.org/10.1016/j.compind.2015.07.001Agostinho, C., Jardim-Gonçalves, R.: Sustaining interoperability of networked liquid-sensing enterprises: a complex systems perspective. Annu. Rev. Control 39, 128–143 (2015). https://doi.org/10.1016/j.arcontrol.2015.03.012Weichhart, G., Molina, A., Chen, D., Whitman, L. E., Vernadat, F.: Challenges and current developments for sensing, smart and sustainable enterprise systems. Computers in Industry (2015). http://doi.org/10.1016/j.compind.2015.07.002Weichhart, G.: Supporting Interoperability for Chaotic and Complex Adaptive Enterprise Systems. On the Move to Meaningful Internet Systems: OTM 2013 Workshops. Confederated International Workshops: OTM Academy, OTM Industry Case Studies Program, ACM, EI2N, ISDE, META4eS, ORM, SeDeS, SINCOM, SMS, and SOMOCO 2013. Proceedings: LNCS 8186, 86–92. (2013). http://doi.org/10.1007/978-3-642-41033-8_14Truex, D.P., Baskerville, R., Klein, H.: Growing systems in emergent organizations. Mag. Commun. ACM CACM Homepage Arch. 42(8), 117–123 (1999)Weiberg, S.: Facilitating collaborative decision-making in six steps. International Association of Facilitators Annual Meeting, pp. 14–15 (1999)Delbecq, A.L., VandeVen, A.H.: A group process model for problem identification and program planning. J. Appl. Behav. Sci. 7, 466–492 (1971). https://doi.org/10.1177/002188637100700404Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York, USA (1980

    Resource-based Modeling and Simulation of Business Processes

    Get PDF
    The simulation-based analysis of business processes (BPs) is a key activity at various phases of the BP lifecycle. from the design phase, to predict the process behavior, down to the execution and improvement phases, to recover from possible performance downgrades and/or improve the process performance. The BP analysis is usually carried out taking as input the BP description in a given BP modeling language. This paper specifically addresses BPs described in BPMN (Business Process Model & Notation) and introduces an approach that exploits both model-driven principles and the DEVS (Discrete Event System Specification) formalism to first annotate the BPMN model with the allocation of task resources described in terms of performance and reliability properties and then transform the annotated BPMN model into a DEVS-based model, which can be eventually executed to get the analysis results of interest. The BPMN annotation is carried out by use of PyBPMN, a lightweight BPMN extension that allows business analysts to specify the allocation of task resources and their properties in terms of both time-related attributes and reliability attributes. The paper overviews the proposed approach and gives the details of the DEVS components that are used to model the behavior of the corresponding BPMN primitives

    TMS'14 Chairs' message

    No full text

    Welcome letter

    No full text

    Report of Collaborative Modeling and Simulation (CoMetS) track of WETICE 2021

    No full text

    Welcome letter

    No full text

    G-DEVS/HLA Environment: A Time Management Improvement

    No full text
    Abstract- This paper presents a distributed discrete event simulation environment based on GDEVS and HLA concepts. The chosen local simulation structure is “flatten” to reduce the exchange of messages between simulation components regarding with classical structure of DEVS simulators. Moreover, we present an integration method to create GDEVS models HLA-compliant; for that purpose, we introduce an effective algorithm of conservative synchronization using the HLA lookahead and so improving the distributed simulation time management. Finally, we detail an example of distributed GDEVS coupled models to show the improvement due to the new algorithm

    Welcome letter

    No full text

    Decentralized Approach for Efficient Simulation of Devs Models

    No full text
    Part 1: Knowledge-Based Performance ImprovementInternational audienceThis paper proposes to improve simulation efficiency of DEVS mod- els based on the classical Discrete Event system Specification (DEVS) formalism by reducing the number of messages exchanged between simulators. We propose three changes: hierarchical modeling tree flattening based on closure under cou- pling, direct coupling and decentralized scheduling. The main idea is to relieve coordinators by giving to simulators more tasks to process

    Welcome letter

    No full text
    • …
    corecore