33 research outputs found
Self-duality equations for spherically symmetric SU(2) gauge fields
A model of spherically symmetric SU(2) gauge theory is considered. The
self-duality equations are written and it is shown that they are compatible
with the Einstein-Yang-Mills equations. It is proven that this property is true
for any gauge theory with curved base space-time and having a compact Lie group
as structural group.Comment: 8 page
Solutions without singularities in gauge theory of gravitation
A de-Sitter gauge theory of the gravitational field is developed using a
spherical symmetric Minkowski space-time as base manifold. The gravitational
field is described by gauge potentials and the mathematical structure of the
underlying space-time is not affected by physical events. The field equations
are written and their solutions without singularities are obtained by imposing
some constraints on the invariants of the model. An example of such a solution
is given and its dependence on the cosmological constant is studied. A
comparison with results obtained in General Relativity theory is also
presented.
Keywords: gauge theory, gravitation, singularity, computer algebraComment: 9 pages, no figure
On Black Holes and Cosmological Constant in Noncommutative Gauge Theory of Gravity
Deformed Reissner-Nordstr\"om, as well as Reissner-Nordstr\"om de Sitter,
solutions are obtained in a noncommutative gauge theory of gravitation. The
gauge potentials (tetrad fields) and the components of deformed metric are
calculated to second order in the noncommutativity parameter. The solutions
reduce to the deformed Schwarzschild ones when the electric charge of the
gravitational source and the cosmological constant vanish. Corrections to the
thermodynamical quantities of the corresponding black holes and to the radii of
different horizons have been determined. All the independent invariants, such
as the Ricci scalar and the so-called Kretschmann scalar, have the same
singularity structure as the ones of the usual undeformed case and no smearing
of singularities occurs. The possibility of such a smearing is discussed. In
the noncommutative case we have a local disturbance of the geometry around the
source, although asymptotically at large distances it becomes flat.Comment: Based on a talk given at the International Conference on Fundamental
and Applied Research in Physics "Farphys 2007", 25-28 October 2007, Iasi,
Romani
Noncommutative gauge theory using covariant star product defined between Lie-valued differential forms
We develop an internal gauge theory using a covariant star product. The
space-time is a symplectic manifold endowed only with torsion but no curvature.
It is shown that, in order to assure the restrictions imposed by the
associativity property of the star product, the torsion of the space-time has
to be covariant constant. An illustrative example is given and it is concluded
that in this case the conditions necessary to define a covariant star product
on a symplectic manifold completely determine its connection.Comment: AMS-LaTeX 19 pages. v2: corrections in language and equations
(typos), expanded sections 3-5, added references. v3: minor presentational
and grammatical corrections, completed, corrected and reordered some
references
Covariant star product on symplectic and Poisson spacetime manifolds
A covariant Poisson bracket and an associated covariant star product in the
sense of deformation quantization are defined on the algebra of tensor-valued
differential forms on a symplectic manifold, as a generalization of similar
structures that were recently defined on the algebra of (scalar-valued)
differential forms. A covariant star product of arbitrary smooth tensor fields
is obtained as a special case. Finally, we study covariant star products on a
more general Poisson manifold with a linear connection, first for smooth
functions and then for smooth tensor fields of any type. Some observations on
possible applications of the covariant star products to gravity and gauge
theory are made.Comment: AMS-LaTeX, 27 pages. v2: minor corrections in presentation and
language, added one referenc
Mikrozonasi Seismic dan Analisis Respon Site Spec Ific Kota Palu
Beberapa peneliti telah melakukan penelitian dan membuat Peta Gempa Indonesia denganversi masing – masing, penelitian ini menyajikan penelitian untuk mendapatkan Peak GroundAcceleration (PGA) untuk beberapa tempat di Kota Palu berdasarkan metoda yang lebihlengkap, sistematis dan berusaha mengurangi faktor ketidak pastian dalam setiap langkahperhitungan yang dilakukan.Penelitian ini akan meliputi pengumpulan dan pengolahan data gempa, studi seismotektonikdan analisis resiko gempa. Data-data gempa dikumpulkan dari tahun 1904 – 2006. Data gempakemudian diolah sehingga didapat data gempa utama dan kelengkapannya.Untukmemperhitungkan faktor ketidak pastian dari masing - masing tahapan perhitungan dipakaimetoda logic tree.Analisis dilakukan dengan bantuan program Equevalent Linear Earthquake Respons Analysis(EERA). Properties dinamik tanah dievaluasi dari data-data hasil penyelidikan tanah yangdikumpulkan dibeberapa tempat di Kota Palu. Hasil dari analisis respon site denganmenggunakan program EERA, dapat digunakan sebagai data masukan untuk pembuatanrespon spectr
PENGARUH MODEL PEMBELAJARAN DIRECT LEARNING TERHADAP HASIL BELAJAR SISWA PADA MATA PELAJARAN PEMOGRAMAN DASAR MENGGUNAKAN APLIKASI DEV- C++ KELAS X TKJ SMKN 6 KUPANG
Penelitian ini bertujuan untuk mengetahui 1) adanya pengaruh penggunaanmodel pembelajaran direct learning terhadap hasil belajar siswa mata pelajaranpemograman dasar kelas X TKJ 1 SMK Negeri 6 Kupang. 2) bagaimana pengaruhpenggunaan model pembelajaran direct learning terhadap hasil belajar siswa matapelajaran pemograman dasar kelas X TKJ 1 SMK Negeri 6 Kupang. Metodepenelitian yang digunakan dalam penelitian ini yaitu penelitian eksperimen, desainperancangan penelitian yang digunakan yaitu Pre-experimental Design, penelitian inimemiliki satu kelompok sebagai subjek penelitian yaitu kelas experimen. Jenispenelitian yang digunakan adalah One Group Pretest-Posttest Design. Pengumpulandata yang dilakukan melalui tes awal, tes akhir dan pengamatan. Analisis data yangdigunakan adalah uji persyaratan analisis dengan uji homogenitas serta uji hipotesisdengan analisis uji regeresi sederhana dan uji t korelasi dengan bantuan StatisticalProduct and Service Solution (SPSS). Hasil penelitian menunjukkan bahwa modelpembelajaran direct learning terhadap hasil belajar dilihat dari nilai Y= 52,875 +0,571X P value < ꭤ sebesar (0,000<0,05), maka disimpulkan bahwa ada pengaruhantara model pembelajaran direct learning dengan hasil belajar siswa. Untukmengetahui bagaimana pengaruh model pembelajaran direct learning terhadap hasilbelajar diperoleh thitung =6,156 didapatkan nilai ttabel 2,032 dengan df = 34. Jadi Nilaithitung > ttabel (6,156>2,032) dan nilai Rsquer = 0,527 maka dapat disimpulkan bahwaterdapat pengaruh yang signifikan sebesar 52,7% antara model pembelajaran directlearning terhadap hasil belajar siswa
Gauge field theories with covariant star-product
A noncommutative gauge theory is developed using a covariant star-product
between differential forms defined on a symplectic manifold, considered as the
space-time. It is proven that the field strength two-form is gauge covariant
and satisfies a deformed Bianchi identity. The noncommutative Yang-Mills action
is defined using a gauge covariant metric on the space-time and its gauge
invariance is proven up to the second order in the noncommutativity parameter.Comment: Dedicated to Ioan Gottlieb on the occasion of his 80th birthday
anniversary. 12 page
Corrections to Schwarzschild Solution in Noncommutative Gauge Theory of Gravity
A deformed Schwarzschild solution in noncommutative gauge theory of
gravitation is obtained. The gauge potentials (tetrad fields) are determined up
to the second order in the noncommutativity parameters . A
deformed real metric is defined and its components are obtained. The
noncommutativity correction to the red shift test of General Relativity is
calculated and it is concluded that the correction is too small to have
observable effects. Implications of such a deformed Schwarzschild metric are
also mentioned.Comment: 12 page
Tensor calculus on noncommutative spaces
It is well known that for a given Poisson structure one has infinitely many
star products related through the Kontsevich gauge transformations. These gauge
transformations have an infinite functional dimension (i.e., correspond to an
infinite number of degrees of freedom per point of the base manifold). We show
that on a symplectic manifold this freedom may be almost completely eliminated
if one extends the star product to all tensor fields in a covariant way and
impose some natural conditions on the tensor algebra. The remaining ambiguity
either correspond to constant renormalizations to the symplectic structure, or
to maps between classically equivalent field theory actions. We also discuss
how one can introduce the Riemannian metric in this approach and the
consequences of our results for noncommutative gravity theories.Comment: 17p; v2: extended version, to appear in CQ