29,239 research outputs found

    Mass formulae and strange quark matter

    Full text link
    We have derived the popularly used parametrization formulae for quark masses at low densities and modified them at high densities within the mass-density-dependent model. The results are applied to investigate the lowest density for the possible existence of strange quark matter at zero temperature.Comment: 9 pages, LATeX with ELSART style, one table, no figures. Improvement on the derivation of qark mass formula

    Macroscopic Quantum Tunneling Effect of Z2 Topological Order

    Full text link
    In this paper, macroscopic quantum tunneling (MQT) effect of Z2 topological order in the Wen-Plaquette model is studied. This kind of MQT is characterized by quantum tunneling processes of different virtual quasi-particles moving around a torus. By a high-order degenerate perturbation approach, the effective pseudo-spin models of the degenerate ground states are obtained. From these models, we get the energy splitting of the ground states, of which the results are consistent with those from exact diagonalization methodComment: 25 pages, 14 figures, 4 table

    Spin-charge Separation in Nodal Antiferromagnetic Insulator

    Full text link
    In this paper, by using two dimensional (2D) Hubbard models with pi-flux phase and that on a hexagonal lattice as examples, we explore spin-charge-separated solitons in nodal antiferromagnetic (AF) insulator - an AF order with massive Dirac fermionic excitations (see detail in the paper). We calculate fermion zero modes and induced quantum numbers on solitons (half skyrmions) in the continuum limit, which are similar to that in the quasi one-dimensional conductor polyacetylene (CH)x and that in topological band insulator. In particular, we find some novel phenomena : thanks to an induced staggered spin moment, a mobile half skyrmion becomes a fermionic particle; when a hole or an electron is added, the half skyrmion turns into a bosonic particle with charge degree of freedom only. Our results imply that nontrivial induced quantum number on solitons may be a universal feature of spin-charge separation in different systems

    Global convergence analysis of the bat algorithm using a markovian framework and dynamical system theory

    Get PDF
    The bat algorithm (BA) has been shown to be effective to solve a wider range of optimization problems. However, there is not much theoretical analysis concerning its convergence and stability. In order to prove the convergence of the bat algorithm, we have built a Markov model for the algorithm and proved that the state sequence of the bat population forms a finite homogeneous Markov chain, satisfying the global convergence criteria. Then, we prove that the bat algorithm can have global convergence. In addition, in order to enhance the convergence performance of the algorithm and to identify the possible effect of parameter settings on convergence, we have designed an updated model in terms of a dynamic matrix. Subsequently, we have used the stability theory of discrete-time dynamical systems to obtain the stable parameter ranges for the algorithm. Furthermore, we use some benchmark functions to demonstrate that BA can indeed achieve global optimality efficiently for these functions
    • …
    corecore