653 research outputs found
Comparison of linear and non-linear 2D+T registration methods for DE-MRI cardiac perfusion studies
A series of motion compensation algorithms is run on the challenge data including methods that optimize only a linear transformation, or a non-linear transformation, or both – first a linear and then a non-linear transformation. Methods that optimize a linear transformation run an initial segmentation of the area of interest around the left myocardium by means of an independent component analysis (ICA) (ICA-*). Methods that optimize non-linear transformations may run directly on the full images, or after linear registration. Non-linear motion compensation approaches applied include one method that only registers pairs of images in temporal succession (SERIAL), one method that registers all image to one common reference (AllToOne), one method that was designed to exploit quasi-periodicity in free breathing acquired image data and was adapted to also be usable to image data acquired with initial breath-hold (QUASI-P), a method that uses ICA to identify the motion and eliminate it (ICA-SP), and a method that relies on the estimation of a pseudo ground truth (PG) to guide the motion compensation
Grid simulation services for the medical community
The first part of this paper presents a selection of medical simulation applications, including image reconstruction, near real-time registration for neuro-surgery, enhanced dose distribution calculation for radio-therapy, inhaled drug delivery prediction, plastic surgery planning and cardio-vascular system simulation. The latter two topics are discussed in some detail. In the second part, we show how such services can be made available to the clinical practitioner using Grid technology. We discuss the developments and experience made during the EU project GEMSS, which provides reliable, efficient, secure and lawful medical Grid services
Economic analysis of crossbreeding programmes in sub-Saharan Africa: A conceptual framework and Kenyan case study
Conventional economic evaluations of crossbreeding programmes have overestimated their benefits by ignoring subsidies, the increased costs of management such as veterinary support services, and the higher levels of risk and socio-environmental costs associated with the loss of the indigenous genotypes. A conceptual evaluation framework is developed and applied to Kenyan dairy farmers. Results suggest that at the national level crossbreeding has had a positive impact on Kenyan society's welfare, although taking into account important social cost components substantially lowers the net benefits. Farm-level performance is, however, little improved under certain production systems by replacing the indigenous zebu with exotic breeds
Spatially resolved simulation of a radio frequency driven micro atmospheric pressure plasma jet and its effluent
Radio frequency driven plasma jets are frequently employed as efficient
plasma sources for surface modification and other processes at atmospheric
pressure. The radio-frequency driven micro atmospheric pressure plasma jet
(APPJ) is a particular variant of that concept whose geometry allows
direct optical access. In this work, the characteristics of the APPJ
operated with a helium-oxygen mixture and its interaction with a helium
environment are studied by numerical simulation. The density and temperature of
the electrons, as well as the concentration of all reactive species are studied
both in the jet itself and in its effluent. It is found that the effluent is
essentially free of charge carriers but contains a substantial amount of
activated oxygen (O, O and O). The simulation results are
verified by comparison with experimental data
Nonrigid Motion Compensation of Free Breathing Acquired Myocardial Perfusion Data
In this work, we present a novel method to compensate the movement in images acquired during free breathing using first-pass gadolinium enhanced, myocardial perfusion magnetic resonance imaging (MRI). First, we use independent component analysis (ICA) to identify the optimal number of independent components (ICs) that separate the breathing motion from the intensity change induced by the contrast agent. Then, synthetic images are created by recombining the ICs, but other then in previously published work (Milles et al. 2008), we omit the component related to motion, and therefore, the resulting reference image series is free of motion. Motion compensation is then achieved by using a multi-pass non-rigid image registration scheme. We tested our method on 15 distinct image series (5 patients) consisting of 58 images each and we validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration. The average correlation to the manually obtained curves before registration 0:89 0:11 was increased to 0:98 0:0
Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada
The NOAA WP-3 aircraft intercepted aged forest fire plumes from Alaska and western Canada during several flights of the NEAQS-ITCT 2k4 mission in 2004. Measurements of acetonitrile (CH3CN) indicated that the air masses had been influenced by biomass burning. The locations of the plume intercepts were well described using emissions estimates and calculations with the transport model FLEXPART. The best description of the data was generally obtained when FLEXPART injected the forest fire emissions to high altitudes in the model. The observed plumes were generally drier than the surrounding air masses at the same altitude, suggesting that the fire plumes had been processed by clouds and that moisture had been removed by precipitation. Different degrees of photochemical processing of the plumes were determined from the measurements of aromatic VOCs. The removal of aromatic VOCs was slow considering the transport times estimated from the FLEXPART model. This suggests that the average OH levels were low during the transport, which may be explained by the low humidity and high concentrations of carbon monoxide and other pollutants. In contrast with previous work, no strong secondary production of acetone, methanol and acetic acid is inferred from the measurements. A clear case of removal of submicron particle volume and acetic acid due to precipitation scavenging was observed. Copyright 2006 by the American Geophysical Union
- …