414 research outputs found
Natural Killer Cells and Liver Fibrosis
In the 40 years since the discovery of natural killer (NK) cells, it has been well established that these innate lymphocytes are important for early and effective immune responses against transformed cells and infections with different pathogens. In addition to these classical functions of NK cells, we now know that they are part of a larger family of innate lymphoid cells and that they can even mediate memory-like responses. Additionally, tissue-resident NK cells with distinct phenotypical and functional characteristics have been identified. Here, we focus on the phenotype of different NK cell subpopulations that can be found in the liver and summarize the current knowledge about the functional role of these cells with a special emphasis on liver fibrosis. NK cell cytotoxicity can contribute to liver damage in different forms of liver disease. However, NK cells can limit liver fibrosis by killing hepatic stellate cell-derived myofibroblasts, which play a key role in this pathogenic process. Therefore, liver NK cells need to be tightly regulated in order to balance these beneficial and pathological effects
Guidelines for the Definition of Innovative Industrial Product-service Systems (PSS) Business Models for Remanufacturing
AbstractRemanufacturing represents a well-suited approach for sustainable development in environmental, economic and social dimensions. Product-service systems (PSS) are among the most important enabler for remanufacturing. Companies that remain owner of a product have an intrinsic motivation to design goods for longer lifecycles considering the possibility of remanufacturing the product or its parts after each use phase. In addition, as the end customer only uses the goods without having its ownership, the acceptance – and consequently the demand – for remanufactured goods is significantly improved. This paper presents guidelines for the definition of innovative business models for remanufacturing, utilizing both remanufacturing and PSS characteristics, and permitting the dissemination of knowledge needed for successful implementation within a company strategy and operations model. Focusing on industrial PSS, an illustrative application of the guidelines is demonstrated
Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms
We report on precision measurements of spin-dependent interaction-strengths
in the 87Rb spin-1 and spin-2 hyperfine ground states. Our method is based on
the recent observation of coherence in the collisionally driven spin-dynamics
of ultracold atom pairs trapped in optical lattices. Analysis of the Rabi-type
oscillations between two spin states of an atom pair allows a direct
determination of the coupling parameters in the interaction hamiltonian. We
deduce differences in scattering lengths from our data that can directly be
compared to theoretical predictions in order to test interatomic potentials.
Our measurements agree with the predictions within 20%. The knowledge of these
coupling parameters allows one to determine the nature of the magnetic ground
state. Our data imply a ferromagnetic ground state for 87Rb in the f=1
manifold, in agreement with earlier experiments performed without the optical
lattice. For 87Rb in the f=2 manifold the data points towards an
antiferromagnetic ground state, however our error bars do not exclude a
possible cyclic phase.Comment: 11 pages, 5 figure
Cooling toolbox for atoms in optical lattices
We propose and analyze several schemes for cooling bosonic and fermionic
atoms in an optical lattice potential close to the ground state of the
no-tunnelling regime. Some of the protocols rely on the concept of algorithmic
cooling, which combines occupation number filtering with ideas from ensemble
quantum computation. We also design algorithms that create an ensemble of
defect-free quantum registers. We study the efficiency of our protocols for
realistic temperatures and in the presence of a harmonic confinement. We also
propose an incoherent physical implementation of filtering which can be
operated in a continuous way.Comment: 14 pages, 13 figure
Nonlinear atom interferometer surpasses classical precision limit
Interference is fundamental to wave dynamics and quantum mechanics. The
quantum wave properties of particles are exploited in metrology using atom
interferometers, allowing for high-precision inertia measurements [1, 2].
Furthermore, the state-of-the-art time standard is based on an interferometric
technique known as Ramsey spectroscopy. However, the precision of an
interferometer is limited by classical statistics owing to the finite number of
atoms used to deduce the quantity of interest [3]. Here we show experimentally
that the classical precision limit can be surpassed using nonlinear atom
interferometry with a Bose-Einstein condensate. Controlled interactions between
the atoms lead to non-classical entangled states within the interferometer;
this represents an alternative approach to the use of non-classical input
states [4-8]. Extending quantum interferometry [9] to the regime of large atom
number, we find that phase sensitivity is enhanced by 15 per cent relative to
that in an ideal classical measurement. Our nonlinear atomic beam splitter
follows the "one-axis-twisting" scheme [10] and implements interaction control
using a narrow Feshbach resonance. We perform noise tomography of the quantum
state within the interferometer and detect coherent spin squeezing with a
squeezing factor of -8.2dB [11-15]. The results provide information on the
many-particle quantum state, and imply the entanglement of 170 atoms [16]
Excitations in two-component Bose-gases
In this paper, we study a strongly correlated quantum system that has become
amenable to experiment by the advent of ultracold bosonic atoms in optical
lattices, a chain of two different bosonic constituents. Excitations in this
system are first considered within the framework of bosonization and Luttinger
liquid theory which are applicable if the Luttinger liquid parameters are
determined numerically. The occurrence of a bosonic counterpart of fermionic
spin-charge separation is signalled by a characteristic two-peak structure in
the spectral functions found by dynamical DMRG in good agreement with
analytical predictions. Experimentally, single-particle excitations as probed
by spectral functions are currently not accessible in cold atoms. We therefore
consider the modifications needed for current experiments, namely the
investigation of the real-time evolution of density perturbations instead of
single particle excitations, a slight inequivalence between the two
intraspecies interactions in actual experiments, and the presence of a
confining trap potential. Using time-dependent DMRG we show that only
quantitative modifications occur. With an eye to the simulation of strongly
correlated quantum systems far from equilibrium we detect a strong dependence
of the time-evolution of entanglement entropy on the initial perturbation,
signalling limitations to current reasonings on entanglement growth in
many-body systems
Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data
Conventional inclusion criteria used in osteoarthritis clinical trials are
not very effective in selecting patients who would benefit from a therapy being
tested. Typically majority of selected patients show no or limited disease
progression during a trial period. As a consequence, the effect of the tested
treatment cannot be observed, and the efforts and resources invested in running
the trial are not rewarded. This could be avoided, if selection criteria were
more predictive of the future disease progression.
In this article, we formulated the patient selection problem as a multi-class
classification task, with classes based on clinically relevant measures of
progression (over a time scale typical for clinical trials). Using data from
two long-term knee osteoarthritis studies OAI and CHECK, we tested multiple
algorithms and learning process configurations (including multi-classifier
approaches, cost-sensitive learning, and feature selection), to identify the
best performing machine learning models. We examined the behaviour of the best
models, with respect to prediction errors and the impact of used features, to
confirm their clinical relevance. We found that the model-based selection
outperforms the conventional inclusion criteria, reducing by 20-25% the number
of patients who show no progression. This result might lead to more efficient
clinical trials.Comment: 22 pages, 12 figures, 10 table
Low-Energy Effective Hamiltonian and the Surface States of Ca_3PbO
The band structure of Ca_3PbO, which possesses a three-dimensional massive
Dirac electron at the Fermi energy, is investigated in detail. Analysis of the
orbital weight distributions on the bands obtained in the first-principles
calculation reveals that the bands crossing the Fermi energy originate from the
three Pb-p orbitals and three Ca-dx2y2 orbitals. Taking these Pb-p and Ca-dx2y2
orbitals as basis wave functions, a tight-binding model is constructed. With
the appropriate choice of the hopping integrals and the strength of the
spin-orbit coupling, the constructed model sucessfully captures important
features of the band structure around the Fermi energy obtained in the
first-principles calculation. By applying the suitable basis transformation and
expanding the matrix elements in the series of the momentum measured from a
Dirac point, the low-energy effective Hamiltonian of this model is explicitely
derived and proved to be a Dirac Hamiltonain. The origin of the mass term is
also discussed. It is shown that the spin-orbit coupling and the orbitals other
than Pb-p and Ca-dx2y2 orbitals play important roles in making the mass term
finite. Finally, the surface band structures of Ca_3PbO for several types of
surfaces are investigated using the constructed tight-binding model. We find
that there appear nontrivial surface states that cannot be explained as the
bulk bands projected on the surface Brillouin zone. The relation to the
topological insulator is also discussed.Comment: 11 page
A Quantum Scattering Interferometer
The collision of two ultra-cold atoms results in a quantum-mechanical
superposition of two outcomes: each atom continues without scattering and each
atom scatters as a spherically outgoing wave with an s-wave phase shift. The
magnitude of the s-wave phase shift depends very sensitively on the interaction
between the atoms. Quantum scattering and the underlying phase shifts are
vitally important in many areas of contemporary atomic physics, including
Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic
clocks, and magnetically-tuned Feshbach resonances. Precise measurements of
quantum scattering phase shifts have not been possible until now because, in
scattering experiments, the number of scattered atoms depends on the s-wave
phase shifts as well as the atomic density, which cannot be measured precisely.
Here we demonstrate a fundamentally new type of scattering experiment that
interferometrically detects the quantum scattering phase shifts of individual
atoms. By performing an atomic clock measurement using only the scattered part
of each atom, we directly and precisely measure the difference of the s-wave
phase shifts for the two clock states in a density independent manner. Our
method will give the most direct and precise measurements of ultracold
atom-atom interactions and will place stringent limits on the time variations
of fundamental constants.Comment: Corrected formatting and typo
- …