4,729 research outputs found
Disruption of reflecting Bose-Einstein condensates due to inter-atomic interactions and quantum noise
We perform fully three-dimensional simulations, using the truncated Wigner
method, to investigate the reflection of Bose-Einstein condensates from abrupt
potential barriers. We show that the inter-atomic interactions can disrupt the
internal structure of a cigar-shaped cloud with a high atom density at low
approach velocities, damping the center-of-mass motion and generating vortices.
Furthermore, by incorporating quantum noise we show that scattering halos form
at high approach velocities, causing an associated condensate depletion. We
compare our results to recent experimental observations.Comment: 5 figure
Quantum Kinetic Theory VI: The Growth of a Bose-Einstein Condensate
A detailed analysis of the growth of a BEC is given, based on quantum kinetic
theory, in which we take account of the evolution of the occupations of lower
trap levels, and of the full Bose-Einstein formula for the occupations of
higher trap levels, as well as the Bose stimulated direct transfer of atoms to
the condensate level introduced by Gardiner et al. We find good agreement with
experiment at higher temperatures, but at lower temperatures the experimentally
observed growth rate is somewhat more rapid. We also confirm the picture of the
``kinetic'' region of evolution, introduced by Kagan et al., for the time up to
the initiation of the condensate. The behavior after initiation essentially
follows our original growth equation, but with a substantially increased rate
coefficient.
Our modelling of growth implicitly gives a model of the spatial shape of the
condensate vapor system as the condensate grows, and thus provides an
alternative to the present phenomenological fitting procedure, based on the sum
of a zero-chemical potential vapor and a Thomas-Fermi shaped condensate. Our
method may give substantially different results for condensate numbers and
temperatures obtained from phenomentological fits, and indicates the need for
more systematic investigation of the growth dynamics of the condensate from a
supersaturated vapor.Comment: TeX source; 29 Pages including 26 PostScript figure
Three-body recombination of ultracold Bose gases using the truncated Wigner method
We apply the truncated Wigner method to the process of three-body
recombination in ultracold Bose gases. We find that within the validity regime
of the Wigner truncation for two-body scattering, three-body recombination can
be treated using a set of coupled stochastic differential equations that
include diffusion terms, and can be simulated using known numerical methods. As
an example we investigate the behaviour of a simple homogeneous Bose gas.Comment: Replaced paper same as original; correction to author list on
cond-mat mad
Theory of the cold collision frequency shift in 1S--2S spectroscopy of Bose-Einstein-condensed and non-condensed hydrogen
We show that a correct formulation of the cold collision frequency shift for
two photon spectroscopy of Bose-condensed and cold non-Bose-condensed hydrogen
is consistent with experimental data. Our treatment includes transport and
inhomogeneity into the theory of a non-condensed gas, which causes substantial
changes in the cold collision frequency shift for the ordinary thermal gas, as
a result of the very high frequency (3.9kHz) of transverse trap mode. For the
condensed gas, we find substantial corrections arise from the inclusion of
quasiparticles, whose number is very large because of the very low frequency
(10.2Hz) of the longitudinal trap mode. These two effects together account for
the apparent absence of a "factor of two" between the two possibilities.
Our treatment considers only the Doppler-free measurements, but could be
extended to Doppler-sensitive measurements. For Bose-condensed hydrogen, we
predict a characteristic "foot" extending into higher detunings than can arise
from the condensate alone, as a result of a correct treatment of the statistics
of thermal quasiparticles.Comment: 16 page J Phys B format plus 6 postscript figure
Derivation of quantum work equalities using quantum Feynman-Kac formula
On the basis of a quantum mechanical analogue of the famous Feynman-Kac
formula and the Kolmogorov picture, we present a novel method to derive
nonequilibrium work equalities for isolated quantum systems, which include the
Jarzynski equality and Bochkov-Kuzovlev equality. Compared with previous
methods in the literature, our method shows higher similarity in form to that
deriving the classical fluctuation relations, which would give important
insight when exploring new quantum fluctuation relations.Comment: 5 page
Thermal effects on chaotic directed transport
We study a chaotic ratchet system under the influence of a thermal
environment. By direct integration of the Lindblad equation we are able to
analyze its behavior for a wide range of couplings with the environment, and
for different finite temperatures. We observe that the enhancement of the
classical and quantum currents due to temperature depend strongly on the
specific properties of the system. This makes difficult to extract universal
behaviors. We have also found that there is an analogy between the effects of
the classical thermal noise and those of the finite size. These results
open many possibilities for their testing and implementation in kicked BECs and
cold atoms experiments.Comment: 5 pages, 4 figure
Memory-Controlled Diffusion
Memory effects require for their incorporation into random-walk models an
extension of the conventional equations. The linear Fokker-Planck equation for
the probability density is generalized to include non-linear and
non-local spatial-temporal memory effects. The realization of the memory
kernels are restricted due the conservation of the basic quantity . A
general criteria is given for the existence of stationary solutions. In case
the memory kernel depends on polynomially the transport is prevented. Owing
to the delay effects a finite amount of particles remains localized and the
further transport is terminated. For diffusion with non-linear memory effects
we find an exact solution in the long-time limit. Although the mean square
displacement shows diffusive behavior, higher order cumulants exhibits
differences to diffusion and they depend on the memory strength
A quantum interface between light and nuclear spins in quantum dots
The coherent coupling of flying photonic qubits to stationary matter-based
qubits is an essential building block for quantum communication networks. We
show how such a quantum interface can be realized between a traveling-wave
optical field and the polarized nuclear spins in a singly charged quantum dot
strongly coupled to a high-finesse optical cavity. By adiabatically eliminating
the electron a direct effective coupling is achieved. Depending on the laser
field applied, interactions that enable either write-in or read-out are
obtained.Comment: 10 pages, 5 figures, final versio
Monte Carlo simulations of bosonic reaction-diffusion systems
An efficient Monte Carlo simulation method for bosonic reaction-diffusion
systems which are mainly used in the renormalization group (RG) study is
proposed. Using this method, one dimensional bosonic single species
annihilation model is studied and, in turn, the results are compared with RG
calculations. The numerical data are consistent with RG predictions. As a
second application, a bosonic variant of the pair contact process with
diffusion (PCPD) is simulated and shown to share the critical behavior with the
PCPD. The invariance under the Galilean transformation of this boson model is
also checked and discussion about the invariance in conjunction with other
models are in order.Comment: Publishe
Bose-Einstein Condensation from a Rotating Thermal Cloud: Vortex Nucleation and Lattice Formation
We develop a stochastic Gross-Pitaveskii theory suitable for the study of
Bose-Einstein condensation in a {\em rotating} dilute Bose gas. The theory is
used to model the dynamical and equilibrium properties of a rapidly rotating
Bose gas quenched through the critical point for condensation, as in the
experiment of Haljan et al. [Phys. Rev. Lett., 87, 21043 (2001)]. In contrast
to stirring a vortex-free condensate, where topological constraints require
that vortices enter from the edge of the condensate, we find that phase defects
in the initial non-condensed cloud are trapped en masse in the emerging
condensate. Bose-stimulated condensate growth proceeds into a disordered vortex
configuration. At sufficiently low temperature the vortices then order into a
regular Abrikosov lattice in thermal equilibrium with the rotating cloud. We
calculate the effect of thermal fluctuations on vortex ordering in the final
gas at different temperatures, and find that the BEC transition is accompanied
by lattice melting associated with diminishing long range correlations between
vortices across the system.Comment: 15 pages, 12 figure
- …