906 research outputs found
Self-consistent calculations of quadrupole moments of the first 2+ states in Sn and Pb isotopes
A method of calculating static moments of excited states and transitions
between excited states is formulated for non-magic nuclei within the Green
function formalism. For these characteristics, it leads to a noticeable
difference from the standard QRPA approach. Quadrupole moments of the first 2+
states in Sn and Pb isotopes are calculated using the self-consistent TFFS
based on the Energy Density Functional by Fayans et al. with the set of
parameters DF3-a fixed previously. A reasonable agreement with available
experimental data is obtained.Comment: 5 pages, 6 figure
Thermal QRPA with Skyrme interactions and supernova neutral-current neutrino-nucleus reactions
The Thermal Quasiparticle Random-Phase Approximation is combined with the
Skyrme energy density functional method (Skyrme-TQRPA) to study the response of
a hot nucleus to an external perturbation. For the sample nuclei, Fe and
Ge, the Skyrme-TQRPA is applied to analyze thermal effects on the
strength function of charge-neutral Gamow-Teller transitions which dominate
neutrino-nucleus reactions at ~MeV. For the relevant
supernova temperatures we calculate the cross sections for inelastic neutrino
scattering. We also apply the method to examine the rate of
neutrino-antineutrino pair emission by hot nuclei. The cross sections and rates
are compared with those obtained earlier from the TQRPA calculations based on
the phenomenological Quasiparticle-Phonon Model Hamiltonian. For inelastic
neutrino scattering on Fe we also compare the Skyrme-TQRPA results to
those obtained earlier from a hybrid approach that combines shell-model and RPA
calculations.Comment: Minor revisions according to referee's recomendation
Low-energy Dipole Excitations in Nuclei at the N=50,82 and Z=50 Shell Closures as Signatures for a Neutron Skin
Low-energy dipole excitations have been investigated theoretically in N=50,
several N=82 isotones and the Z=50 Sn isotopes. For this purpose a method
incorporating both HFB and multi-phonon QPM theory is applied. A concentration
of one-phonon dipole strength located below the neutron emission threshold has
been calculated in these nuclei. The analysis of the corresponding neutron and
proton dipole transition densities allows to assign a genuine pattern to the
low-energy excitations and making them distinct from the conventional GDR
modes. Analyzing also the QRPA wave functions of the states we can identify
these excitations as Pygmy Dipole Resonance (PDR) modes, recently studied also
in Sn and N=82 nuclei. The results for N=50 are exploratory for an experimental
project designed for the bremsstrahlung facility at the ELBE accelerator.Comment: Nuclear Physics in Astrophysics III Conference, 26 - 31 March 2007,
Forschungszentrum Dresden-Rossendorf, German
Gamow-Teller strength distributions at finite temperatures and electron capture in stellar environments
We propose a new method to calculate stellar weak-interaction rates. It is
based on the Thermo-Field-Dynamics formalism and allows the calculation of the
weak-interaction response of nuclei at finite temperatures. The thermal
evolution of the GT distributions is presented for the sample nuclei Fe and ~Ge. For Ge we also calculate the strength distribution
of first-forbidden transitions. We show that thermal effects shift the GT
centroid to lower excitation energies and make possible negative- and
low-energy transitions. In our model we demonstrate that the unblocking effect
for GT transitions in neutron-rich nuclei is sensitive to increasing
temperature. The results are used to calculate electron capture rates and are
compared to those obtained from the shell model.Comment: 16 pages, 9 figure
Population of isomers in decay of the giant dipole resonance
The value of an isomeric ratio (IR) in N=81 isotones (Ba, Ce,
Nd and Sm) is studied by means of the ( reaction.
This quantity measures a probability to populate the isomeric state in respect
to the ground state population. In ( reactions, the giant dipole
resonance (GDR) is excited and after its decay by a neutron emission, the
nucleus has an excitation energy of a few MeV. The forthcoming decay
by direct or cascade transitions deexcites the nucleus into an isomeric or
ground state. It has been observed experimentally that the IR for Ba
and Ce equals about 0.13 while in two heavier isotones it is even less
than half the size. To explain this effect, the structure of the excited states
in the energy region up to 6.5 MeV has been calculated within the Quasiparticle
Phonon Model. Many states are found connected to the ground and isomeric states
by , and transitions. The single-particle component of the wave
function is responsible for the large values of the transitions. The calculated
value of the isomeric ratio is in very good agreement with the experimental
data for all isotones. A slightly different value of maximum energy with which
the nuclei rest after neutron decay of the GDR is responsible for the reported
effect of the A-dependence of the IR.Comment: 16 pages, 4 Fig
Ground state correlations and structure of odd spherical nuclei
It is well known that the Pauli principle plays a substantial role at low
energies because the phonon operators are not ideal boson operators.
Calculating the exact commutators between the quasiparticle and phonon
operators one can take into account the Pauli principle corrections. Besides
the ground state correlations due to the quasiparticle interaction in the
ground state influence the single particle fragmentation as well. In this
paper, we generalize the basic QPM equations to account for both mentioned
effects. As an illustration of our approach, calculations on the structure of
the low-lying states in Ba have been performed.Comment: 12 pages, 1 figur
Abelian symmetries in multi-Higgs-doublet models
N-Higgs doublet models (NHDM) are a popular framework to construct
electroweak symmetry breaking mechanisms beyond the Standard model. Usually,
one builds an NHDM scalar sector which is invariant under a certain symmetry
group. Although several such groups have been used, no general analysis of
symmetries possible in the NHDM scalar sector exists. Here, we make the first
step towards this goal by classifying the elementary building blocks, namely
the abelian symmetry groups, with a special emphasis on finite groups. We
describe a strategy that identifies all abelian groups which are realizable as
symmetry groups of the NHDM Higgs potential. We consider both the groups of
Higgs-family transformations only and the groups which also contain generalized
CP transformations. We illustrate this strategy with the examples of 3HDM and
4HDM and prove several statements for arbitrary N.Comment: 33 pages, 2 figures; v2: conjecture 3 is proved and becomes theorem
3, more explanations of the main strategy are added, matches the published
versio
Spin splitting of X-related donor impurity states in an AlAs barrier
We use magnetotunneling spectroscopy to observe the spin splitting of the
ground state of an X-valley-related Si-donor impurity in an AlAs barrier. We
determine the absolute magnitude of the effective Zeeman spin splitting factors
of the impurity ground state to be g= 2.2 0.1. We also investigate
the spatial form of the electron wave function of the donor ground state, which
is anisotropic in the growth plane
- …
