130 research outputs found

    Efficient all-optical production of large 6^6Li quantum gases using D1_1 gray-molasses cooling

    Full text link
    We use a gray molasses operating on the D1_1 atomic transition to produce degenerate quantum gases of 6^{6}Li with a large number of atoms. This sub-Doppler cooling phase allows us to lower the initial temperature of 109^9 atoms from 500 to 40 ÎĽ\muK in 2 ms. We observe that D1_1 cooling remains effective into a high-intensity infrared dipole trap where two-state mixtures are evaporated to reach the degenerate regime. We produce molecular Bose-Einstein condensates of up to 5Ă—\times105^{5} molecules and weakly-interacting degenerate Fermi gases of 7Ă—7\times105^{5} atoms at T/TF<0.1T/T_{F}<0.1 with a typical experimental duty cycle of 11 seconds.Comment: 5 pages, 3 figure

    Exploring the ferromagnetic behaviour of a repulsive Fermi gas via spin dynamics

    Full text link
    Ferromagnetism is a manifestation of strong repulsive interactions between itinerant fermions in condensed matter. Whether short-ranged repulsion alone is sufficient to stabilize ferromagnetic correlations in the absence of other effects, like peculiar band dispersions or orbital couplings, is however unclear. Here, we investigate ferromagnetism in the minimal framework of an ultracold Fermi gas with short-range repulsive interactions tuned via a Feshbach resonance. While fermion pairing characterises the ground state, our experiments provide signatures suggestive of a metastable Stoner-like ferromagnetic phase supported by strong repulsion in excited scattering states. We probe the collective spin response of a two-spin mixture engineered in a magnetic domain-wall-like configuration, and reveal a substantial increase of spin susceptibility while approaching a critical repulsion strength. Beyond this value, we observe the emergence of a time-window of domain immiscibility, indicating the metastability of the initial ferromagnetic state. Our findings establish an important connection between dynamical and equilibrium properties of strongly-correlated Fermi gases, pointing to the existence of a ferromagnetic instability.Comment: 8 + 17 pages, 4 + 8 figures, 44 + 19 reference

    Connecting dissipation and phase slips in a Josephson junction between fermionic superfluids

    Full text link
    We study the emergence of dissipation in an atomic Josephson junction between weakly-coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the BEC-BCS crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equlibrium quantum systems.Comment: 6 pages, 4 figures + Supplemental Materia

    A degenerate Fermi gas of polar molecules

    Get PDF
    Experimental realization of a quantum degenerate gas of molecules would provide access to a wide range of phenomena in molecular and quantum sciences. However, the very complexity that makes ultracold molecules so enticing has made reaching degeneracy an outstanding experimental challenge over the past decade. We now report the production of a degenerate Fermi gas of ultracold polar molecules of potassium–rubidium (KRb). Through coherent adiabatic association in a deeply degenerate mixture of a rubidium Bose-Einstein condensate and a potassium Fermi gas, we produce molecules at temperatures below 0.3 times the Fermi temperature. We explore the properties of this reactive gas and demonstrate how degeneracy suppresses chemical reactions, making a long-lived degenerate gas of polar molecules a reality

    Resonant collisional shielding of reactive molecules using electric fields

    Full text link
    Full control of molecular interactions, including reactive losses, would open new frontiers in quantum science. Here, we demonstrate extreme tunability of chemical reaction rates by using an external electric field to shift excited collision channels of ultracold molecules into degeneracy with the initial collision channel. In this situation, resonant dipolar interactions mix the channels at long range, dramatically altering the intermolecular potential. We prepare fermionic potassium-rubidium (KRb) molecules in their first excited rotational state and observe a three orders-of-magnitude modulation of the chemical reaction rate as we tune the electric field strength by a few percent across resonance. In a quasi-two-dimensional geometry, we accurately determine the contributions from the three lowest angular momentum projections of the collisions. Using the resonant features, we shield the molecules from loss and suppress the reaction rate by up to an order of magnitude below the background value, realizing a long-lived sample of polar molecules in large electric fields.Comment: 17+4 pages, 4+1 figure

    Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas

    Get PDF
    Ultracold polar molecules possess long-range, anisotropic and tunable dipolar interactions, providing opportunities to probe quantum phenomena that are inaccessible with existing cold gas platforms. However, experimental progress has been hindered by the dominance of two-body loss over elastic interactions, which prevents efficient evaporative cooling. Although recent work has demonstrated controlled interactions by confining molecules to a two-dimensional geometry, a general approach for tuning molecular interactions in a three-dimensional stable system has been lacking. Here we demonstrate tunable elastic dipolar interactions in a bulk gas of ultracold 40K87Rb molecules in three dimensions, facilitated by an electric field-induced shielding resonance that suppresses the reactive loss by a factor of 30. This improvement in the ratio of elastic to inelastic collisions enables direct thermalization. The thermalization rate depends on the angle between the collisional axis and the dipole orientation controlled by an external electric field, a direct manifestation of the anisotropic dipolar interaction. We achieve evaporative cooling mediated by the dipolar interactions in three dimensions. This work demonstrates full control of a long-lived bulk quantum gas system with tunable long-range interactions, paving the way for the study of collective quantum many-body physics
    • …
    corecore