21 research outputs found

    Monitoring and mapping soil functionality in degraded areas of organic European vineyards

    Get PDF
    Soil malfunctioning, caused by an improper land preparation before vine plantation and/or management, is a common problem in European vineyards. Soil malfunctioning can include: reduced contribution of the soil fauna, poor organic matter content, imbalance nutritional status, altered pH, water deficiency, soil compaction and/or scarce oxygenation. To address these problems, ReSolVe, a transnational European research project, aimed at testing the effects of selected agronomic strategies for restoring optimal soil functionality in degraded areas within organic vineyard. The project involves 8 research groups in 6 different EU countries (Italy, Spain, France, Sweden, Slovenia, and Turkey) with experts from several disciplines including soil science, ecology, microbiology, grapevine physiology, viticulture, and biometry. The experimental vineyards are situated in Italy (Chianti hills and Maremma plain, Tuscany), Spain (La Rioja), France (Bordeaux and Languedoc), and Slovenia (Primorska) for winegrapes, and in Turkey (Adana and Mersin) for tablegrapes. Three different restoring strategies have been implemented: (i) compost, (ii) green manure with winter legumes, and (iii) dry mulching with cover crops. These strategies have being tested according to their efficiency to improve i) plant and root growth; and ii) grape yield and quality; optimize iii) the quality of soil ecosystem services; and iv) the terroir effect. The first activity of the project was characterizing and mapping the degraded areas within experimental vineyards. In the work we used non-invasive technologies to characterize soil and plant status. In Spanish and Italian vineyards, the delineation of degraded areas was performed by gamma-ray spectroscopy for topsoil, RGB machine vision for canopy status and thermography for plant water status. Gamma-ray spectroscopy measured continuously the natural gamma-ray emitted from the first 30-40 cm of soil, calculating the contribution of the main radionuclides (40K, 232Th, and 238U). The spectra of gamma-ray were able to provide information about mineralogy, texture, surficial stoniness and carbonates. RGB and thermal cameras were used to assess canopy porosity, leaf area exposure and vine water status of both degraded and non-degraded areas. All soil, canopy and water status parameters were mapped

    Effect of organic treatments on soil carbon and nitrogen dynamics in vineyard

    Get PDF
    The work aims to investigate the effects of different soil management strategies on carbon sequestration and total nitrogen in areas of vineyards suffering from loss of soil functionality. Treatments, selected for inter-row management, to re-install soil functionality were based on compost or other organic amendments (COMP), green manure (GM), and dry mulching (DM) strategies using winter legumes and cereals. Cover crops were seeded in fall and mown in late spring, leaved in the ground for mulching in DM or incorporated into the uppermost soil layers in GM. Such approaches were investigated in six vineyards in Italy, six in France, and two vineyards in Slovenia and Turkey. The results showed that COMP significantly increased total organic carbon (TOC) and total nitrogen (Ntot) in the topsoil after one year of application. Also DM tends to increase significantly TOC in the topsoil, but only after two years. Modelling 20-year carbon stock dynamics in Italy vineyards, the average increase resulted 0.49, 0.34, 0.21 and 0.03 Mg C ha-1 yr-1 for COMP, DM, GM and control, respectively

    Soil functionality assessment in degraded plots of vineyards

    Get PDF
    Land transformation to adapt fields to mechanization in perennial crop farming is a common practice which includes land levelling, deep ploughing, stone-breakage and clearing, application of fertilizers and amendments. Manipulation of the natural soil profile along its entire depth can severely disturb the naturally existing chemical physical,biological and hydrological equilibrium (Costantini and Barbetti, 2008; Costantini et al., 2013). The most common effects of the land transformation are mixing of soil horizons and soil truncation, which result in reduction of soil depth and available water, organic matter depletion, enrichment of calcium carbonate content in the topsoil,imbalance of some element ratio, and decline in the activity and diversity of soil biological communities involved in nutrient cycles. A decline in the capacity of soil to accommodate the soil-dwelling organisms causes a strong impact on several ecosystem services, in particular, the growth of the vine, the quality and quantity of the grapes,the production costs and the risk of erosion. These negative effects of a pre-planting mismanagement can occur simultaneously and interact to decrease soil fertility and grapevine performance (Lanyon et al., 2004; Tagliavini and Rombolà, 2001; Martínez-Casasnovas and Ramos, 2009).Since soil spatial variability is usually high, soil manipulations frequently result into reduced soil functionality and decline of soil ecosystem services in defined plots of the vineyards. Sometimes soil degradation in these areas is very high and compromises not only vine performance and crop yield, but also disease resistance of plants to diseases and their survival. The impact of improper soil manipulations in vineyards may be of particular concern, because vineyards are frequently located on marginal hillsides, which are sensitive to soil erosion and characterized by shallow soil depth (Ramos, 2006). This paper wants to show the assessment of soil functionality in degraded areas within two farms in Tuscany. This work reports the results of the first activities in Italian sites of the ReSolVe Core-organic+ project, aimed at restoring optimal Soil functionality in degraded areas within organic European vineyards

    Assessment of soil ecosystem in degraded areas of vineyards after organic treatments

    Get PDF
    In Italian vineyards, it is quite common to have areas characterized by problems in vine health, grape production and quality, often caused by improper land preparation before vine plantation and/or management. Causes for soil malfunctioning can include reduced contribution of the soil fauna to the ecosystem services such as nutrient cycles and organic matter turnover. ReSolVe is a transnational and interdisciplinary project, supported by Core-Organic+ program, aimed at testing the effects of selective agronomic strategies for restoring optimal soil functionality in degraded areas within organic vineyard. For this purpose, the evaluation and biomonitoring of the abundance of soil mesofauna, nematodes and microarthropods, represents an efficient tool to characterize the effects of crop management on soil quality. Assessing enzyme activities involved in the main biogeochemical cycling of C, N, P and S can also provide indication of soil functions and health status. Italian experimental plots are situated in two commercial farms in Tuscany: i) Fontodi, Panzano in Chianti (FI), which has been managed organically for more than 20 years and ii) San Disdagio, Roccastrada (GR), under organic farming since 2014. In each farm, three plots (250 m2 each) in the degraded areas and three relative control plots in the non-degraded areas were selected. The different restoring strategies implemented in each area were: i) compost, produced on farm by manure + pruning residue + grass, ii) faba bean and winter barley green manure, iii) dry mulching after sowing with Trifolium squarrosum L. Each treated and control plot has been studied for soil nematodes, microarthropods, enzymatic activity, and organic matter turnover using tea-bag index, as well as total organic carbon (TOC) and total nitrogen (TN). Soil sampling was carried out to 0-30 cm depth for TOC, TN, enzymes and nematodes and to 10 cm for microarthropods. Tea-bag index was determined following the Keuskamp et al. method (2013), in order to gather data on decomposition rate and litter stabilisation by using commercially available tea bags as standardised test kits. The extraction of nematodes and microarthropods were performed by the Bermann method and the Berlese- Tullgren selector, respectively. The biological soil quality was evaluated by the Maturity Index of nematodes (MI) and Biological Soil Quality index of microarthropods (QBSar). The results from soil sampling before restoring showed significantly lower values of SOC and TN in degraded areas, but no significant differences between degraded and non-degraded areas for enzymes, QBSar, nematode abundance and MI. Fontodi farm, under organic management since many years, showed significantly higher abundance of microarthropods, nematodes and enzymes than San Disdagio farm. The application of restoration techniques in 2016 showed a significant increase of TOC and TN only under compost addition treatment. As regards microarthropod communities, all the treatments showed a sensible increase in abundance and the conservation of high QBSar values. All the treatments increased the fungal feeder activity of nematodes and decreased the number of plant parasitic nematodes taxa. The major pest of grapes, the virus-vector Xiphinema index (Longidoridae), disappeared in the treated plots, whereas it remained in the control plots

    Assessment and restoring soil functionality in degraded areas of organic vineyards. The preliminary results of the ReSolVe project in Italy

    Get PDF
    In both conventional and organic Italian vineyards, it is quite common to have areas characterized by problems in vine health, grape production and quality, often caused by improper land preparation before vine plantation and/or management. Causes for soil malfunctioning can include: reduced contribution of the soil fauna to the ecosystem services (i.e. nutrient cycles), poor organic matter content, imbalance of some element ratio, altered pH, water deficiency, soil compaction and/or scarce oxygenation. ReSolVe is a transnational and interdisciplinary 3-years research project aimed at testing the effects of selected organic strategies for restoring optimal soil functionality in degraded areas within vineyard. The different restoring strategies implemented in each plot will be: i) compost produced on farm by manure + pruning residue + grass, ii) faba bean and barley green manure, iii) sowing and dry mulching with Trifolium squarrosum L. During two years of such treatments, the trend of the soil features and the grapevine status will be monitored in detail, to reveal the positive and negative effects of such treatments. The project involves 8 research groups in 6 different EU countries (Italy, France, Spain, Sweden, Slovenia, and Turkey), with experts from several disciplines, including soil science, ecology, microbiology, grapevine physiology, viticulture, and biometry. The experimental vineyards are situated in Italy (Chianti hills and Maremma plain, Tuscany), France (Bordeaux and Languedoc), Spain (La Rioja) and Slovenia (Primorska) for winegrape, and in Turkey (Adana and Mersin) for table grape. Soil features before implementing restoring strategies showed lower content of soil organic matter and enzyme activities, and higher carbonates in degraded areas than in the non-degraded areas. The Biological Soil Quality values of microarthropods were always high, in comparison with data registered in similarly managed vineyards or stable ecosystems, and the data showed homogeneous patterns within the experimental plots. Nematode abundance, taxa richness and maturity (MI) and plant parasitic (PPI) indices were higher in nondegraded than degraded areas, but differences were not significant. Grapevines in degraded areas of both farms showed less vegetative vigour and significantly lower values in the SPAD colour index. The yield and the weight of the grape bunches and berries were greater in the not degraded. The grapes of degraded areas at harvest had instead a sugar content significantly higher (on average +2.5�Brix). The restoration techniques and the monitoring methodologies developed and tested during the ReSolVe project will be described in specific final guidelines. The restoration techniques will be accessible for all the European farmers and will be low cost and environmental-friendly. A protocol of analyses and measurements between the all partners will allow an effective and comparable monitoring of vineyard ecosystemic functioning in European countries

    Effects of reduced soil functionality in European vineyards

    Get PDF
    Improper or excessive land preparation methods in vineyards before planting can have a considerable impact on soil functionality. They include excessive levelling and deep ploughing leading to disturbances of the natural contour of slopes and destruction, truncation and burial of soil horizons. Manipulations may significantly modify chemical, physical, biological and hydrological balance of soils. Problems that may arise from these interventions relate to the reduction of organic substances, enrichment of calcium carbonate and soluble salts, impacting development and health of grapevines. Reduced water retention capacity can lead to increased water stress during dry season, decreased water permeability and circulation of oxygen in the soil, increased runoff volume, surface erosion and landslide risk, reduced biodiversity and limitation of biochemical processes (organic matter mineralization, bioavailability of nutrients, etc.). Soil degradations can lead to the loss of soil functionality even after the planting as a result of accelerated erosion, compaction by agricultural vehicles, excessive loss of organic matter and nutrients, and the accumulation of heavy metals such as copper. In both conventional and organic vineyards, it is quite common to have areas with reduced soil functionality that have negative impact on vine health and grape production and quality. In the framework of the Core organic RESOLVE project, a study was conducted in organic vineyards showing areas with reduced and good soil functionality. Degraded soils resulted in significantly lower amounts of grapes. The chlorophyll index (SPAD) of the grapevine during veraison was significantly lower in areas of degraded soils compared with the situation in areas of the same vineyard with non-degraded soils. In general, causes of soil malfunctioning were related to a lower fertility, including reduced organic carbon, total nitrogen and cation exchange capacity, higher concentrations of carbonates, and increased stoniness in the topsoil. Degraded soils showed lower structure quality and rooting depth limited by shallow saprolite or horizon features such as compaction, scarce fertility and high content of carbonates. The soils in the non-degraded areas showed significant higher content of total nitrogen and higher carbon/nitrogen ratios, thus a better stability of organic matter. On the other hand, biological diversity and activity, monitored by different proxies (microarthropods, nematodes, enzymes, organic matter turnover by Tea bag index) in some vineyards, all managed organically, did not show any clear and significant differences between degraded and not degraded areas. Similarly, no clear difference in overall microbial diversity indices (Shannon, Simpson) and diversity evenness (Pielou) were observed between non-degraded and degraded areas. All indices were relatively high and indicative for rich occurrence of abundant and rare microbial species, high diversity and low abundance of individual species and high species evenness

    Fast but spatially scattered smectite-formation in the proglacial area Morteratsch: An evaluation using GIS

    Full text link
    Proglacial areas in the Alps usually cover a time span of deglaciation of about 150 years (time since the end of the ‘Little Ice Age’ in the 1850s). In these proglacial areas soils have started to develop. Due to the continuous retreat of the Morteratsch glacier (Swiss Alps), the corresponding proglacial area offers a continuous time sequence from 0 to 150 year-old surfaces. Furthermore, an optimal digital dataset about the development of vegetation and soils is available for this area. The soils have been developing on glacial till having a granitoidic character. We investigated the clay mineral assemblage at 35 sites within the glacier forefield. Smectite can be used as a proxy for weathering intensity in these environments. In the proglacial area, the smectite concentration in the topsoil steadily increased with time of weathering; however, this development displayed a strongly scattered trend. The complex interplay of biological, physical, and chemical processes in pedogenesis and clay mineral evolution limits our ability to predict and interpret landscape dynamics. We consequently tried to analyse the role of topographic and vegetation modifications on the smectite content. Sites not or only slightly prone to erosion (flattening slope ridge, steepening slope ridge) or flat morphology promoted the formation of smectite. In addition, the texture of the soil material influenced soil moisture and hence the degree of weathering and the development of vegetation. Although vegetation is not a fully independent factor, because it is interrelated to the surrounding environmental conditions, it seemed to exert its influence on weathering and, consequently, the formation of smectite. Green alder stands and grass heath, where moister soils develop that have a finer texture or where more organic acids are produced, were correlated with a higher smectite content. Humus forms serve as a proxy for the soil biota and soil organic matter composition. At sites having a Eumoder and a higher soil organic matter content, the smectite concentration was elevated. At these sites, the production of chelating compounds or organic acids in the soil is believed to promote the development of smectites via an intermediate stage of hydroxy-interlayered minerals and the subsequent removal of the hydroxide polymers. In this work we have demonstrated that the topographic signature and the effect of vegetation on the formation of smectite and consequent weathering are pervasive. Our results will serve as a basis for further spatio-temporal modelling
    corecore