199 research outputs found

    Ordering in Two-Dimensional Ising Models with Competing Interactions

    Get PDF
    We study the 2D Ising model on a square lattice with additional non-equal diagonal next-nearest neighbor interactions. The cases of classical and quantum (transverse) models are considered. Possible phases and their locations in the space of three Ising couplings are analyzed. In particular, incommensurate phases occurring only at non-equal diagonal couplings, are predicted. We also analyze a spin-pseudospin model comprised of the quantum Ising model coupled to XY spin chains in a particular region of interactions, corresponding to the Ising sector's super-antiferromagnetic (SAF) ground state. The spin-SAF transition in the coupled Ising-XY model into a phase with co-existent SAF Ising (pseudospin) long-range order and a spin gap is considered. Along with destruction of the quantum critical point of the Ising sector, the phase digram of the Ising-XY model can also demonstrate a re-entrance of the spin-SAF phase. A detailed study of the latter is presented. The mechanism of the re-entrance, due to interplay of interactions in the coupled model, and the conditions of its appearance are established. Applications of the spin-SAF theory for the transition in the quarter-filled ladder compound NaV2O5 are discussed.Comment: Minor revisions and refs. added; published version of the invited paper in a special issue of "Low Temp. Physics

    Critical temperature and density of spin-flips in the anisotropic random field Ising model

    Get PDF
    We present analytical results for the strongly anisotropic random field Ising model, consisting of weakly interacting spin chains. We combine the mean-field treatment of interchain interactions with an analytical calculation of the average chain free energy (``chain mean-field'' approach). The free energy is found using a mapping on a Brownian motion model. We calculate the order parameter and give expressions for the critical random magnetic field strength below which the ground state exhibits long range order and for the critical temperature as a function of the random magnetic field strength. In the limit of vanishing interchain interactions, we obtain corrections to the zero-temperature estimate by Imry and Ma [Phys. Rev. Lett. 35, 1399 (1975)] of the ground state density of domain walls (spin-flips) in the one-dimensional random field Ising model. One of the problems to which our model has direct relevance is the lattice dimerization in disordered quasi-one-dimensional Peierls materials, such as the conjugated polymer trans-polyacetylene.Comment: 28 pages, revtex, 4 postscript figures, to appear in Phys. Rev.

    Density of Neutral Solitons in Weakly Disordered Peierls Chains

    Get PDF
    We study the effects of weak off-diagonal disorder on Peierls systems with a doubly degenerate ground state. We show that for these systems disorder in the electron hopping amplitudes induces a finite density of solitons in the minimal-energy lattice configuration of a single chain. These disorder-induced dimerization kinks are neutral and have spin 1/2. Using a continuum model for the Peierls chain and treating the lattice classically, we analytically calculate the average free energy and density of kinks. We compare these results to numerical calculations for a discrete model and discuss the implications of the kinks for the optical and magnetic properties of the conjugated polymer trans-polyacetylene.Comment: 28 pages, revtex, 5 Postscript figures, to appear in Phys. Rev.

    Orbital ordering in charge transfer insulators

    Get PDF
    We discuss a new mechanism of orbital ordering, which in charge transfer insulators is more important than the usual exchange interactions and which can make the very type of the ground state of a charge transfer insulator, i.e. its orbital and magnetic ordering, different from that of a Mott-Hubbard insulator. This purely electronic mechanism allows us to explain why orbitals in Jahn-Teller materials typically order at higher temperatures than spins, and to understand the type of orbital ordering in a number of materials, e.g. K_2CuF_4, without invoking the electron-lattice interaction.Comment: 4 pages, 2 figure

    Evidence for a Quasi-1D Topological-Excitation Liquid in Bi2212 by Tunneling Spectroscopy

    Full text link
    Tunneling measurements have been carried out on heavily underdoped and slightly overdoped Bi2212 single crystals by using a break-junction technique. We find that in-plane tunneling spectra below Tc are the combination of incoherent part from the pseudogap and coherent quasiparticle peaks. There is a correlation between the magnitude of the pseudogap and the magnitude of the superconducting gap in Bi2212. We find that the quasiparticle conductance peaks are caused by condensed solitonlike excitations.Comment: Europysics Lett. (in press

    Phase diagram of disordered spin-Peierls systems

    Get PDF
    We study the competition between the spin-Peierls and the antiferromagnetic ordering in disordered quasi-one-dimensional spin systems. We obtain the temperature vs disorder-strength phase diagram, which qualitatively agrees with recent experiments on doped CuGeO_3.Comment: 4 pages, revtex, epsf, 2 Postscript figure

    Frustrated spin model as a hard-sphere liquid

    Get PDF
    We show that one-dimensional topological objects (kinks) are natural degrees of freedom for an antiferromagnetic Ising model on a triangular lattice. Its ground states and the coexistence of spin ordering with an extensive zero-temperature entropy can be easily understood in terms of kinks forming a hard-sphere liquid. Using this picture we explain effects of quantum spin dynamics on that frustrated model, which we also study numerically.Comment: 5 pages, 3 figure

    Domain excitations in spin-Peierls systems

    Full text link
    We study a model of a Spin-Peierls material consisting of a set of antiferromagnetic Heisenberg chains coupled with phonons and interacting among them via an inter-chain elastic coupling. The excitation spectrum is analyzed by bosonization techniques and the self-harmonic approximation. The elementary excitation is the creation of a localized domain structure where the dimerized order is the opposite to the one of the surroundings. It is a triplet excitation whose formation energy is smaller than the magnon gap. Magnetic internal excitations of the domain are possible and give the further excitations of the system. We discuss these results in the context of recent experimental measurements on the inorganic Spin-Peierls compound CuGeO3_3Comment: 5 pages, 2 figures, corrected version to appear in Phys. Rev.

    Reentrant Spin-Peierls Transition in Mg-Doped CuGeO_3

    Full text link
    We report a synchrotron x-ray scattering study of the diluted spin-Peierls (SP) material Cu_{1-x}Mg_xGeO_3. In a recent paper we have shown that the SP dimerization attains long-range order only for x < x_c = 0.022(0.001). Here we report that the SP transition is reentrant in the vicinity of the critical concentration x_c. This is manifested by broadening of the SP dimerization superlattice peaks below the reentrance temperature, T_r, which may mean either the complete loss of the long-range SP order or the development of a short-range ordered component within the long-range ordered SP state. Marked hysteresis and very large relaxation times are found in the samples with Mg concentrations in the vicinity of x_c. The reentrant transition is likely related to the competing Neel transition which occurs at a temperature similar to T_r. We argue that impurity-induced competing interchain interactions play an essential role in these phenomena.Comment: 5 pages, 4 embedded eps figure

    Electric-dipole active two-magnon excitation in {\textit{ab}} spiral spin phase of a ferroelectric magnet Gd0.7_{\textbf{0.7}}Tb0.3_{\textbf{0.3}}MnO3_{\textbf 3}

    Full text link
    A broad continuum-like spin excitation (1--10 meV) with a peak structure around 2.4 meV has been observed in the ferroelectric abab spiral spin phase of Gd0.7_{0.7}Tb0.3_{0.3}MnO3_3 by using terahertz (THz) time-domain spectroscopy. Based on a complete set of light-polarization measurements, we identify the spin excitation active for the light EE vector only along the a-axis, which grows in intensity with lowering temperature even from above the magnetic ordering temperature but disappears upon the transition to the AA-type antiferromagnetic phase. Such an electric-dipole active spin excitation as observed at THz frequencies can be ascribed to the two-magnon excitation in terms of the unique polarization selection rule in a variety of the magnetically ordered phases.Comment: 11 pages including 3 figure
    corecore