199 research outputs found

    Exact Solution of the Munoz-Eaton Model for Protein Folding

    Full text link
    A transfer-matrix formalism is introduced to evaluate exactly the partition function of the Munoz-Eaton model, relating the folding kinetics of proteins of known structure to their thermodynamics and topology. This technique can be used for a generic protein, for any choice of the energy and entropy parameters, and in principle allows the model to be used as a first tool to characterize the dynamics of a protein of known native state and equilibrium population. Applications to a β\beta-hairpin and to protein CI-2, with comparisons to previous results, are also shown.Comment: 4 pages, 5 figures, RevTeX 4. To be published in Phys. Rev. Let

    Neuer Kopf, alte Ideen? : "Normalisierung" des Front National unter Marine Le Pen

    Get PDF
    In this article, it is investigated whether vibrational entropy (VE) is an important contribution to the free energy of globular proteins at ambient conditions. VE represents the major configurational-entropy contribution of these proteins. By definition, it is an average of the configurational entropies of the protein within single minima of the energy landscape, weighted by their occupation probabilities. Its large part originates from thermal motion of flexible torsion angles giving rise to the finite peak widths observed in torsion angle distributions. While VE may affect the equilibrium properties of proteins, it is usually neglected in numerical calculations as its consideration is difficult. Moreover, it is sometimes believed that all well-packed conformations of a globular protein have similar VE anyway. Here, we measure explicitly the VE for six different conformations from simulation data of a test protein. Estimates are obtained using the quasi-harmonic approximation for three coordinate sets, Cartesian, bond-angle-torsion (BAT), and a new set termed rotamer-degeneracy lifted BAT coordinates by us. The new set gives improved estimates as it overcomes a known shortcoming of the quasi-harmonic approximation caused by multiply populated rotamer states, and it may serve for VE estimation of macromolecules in a very general context. The obtained VE values depend considerably on the type of coordinates used. However, for all coordinate sets we find large entropy differences between the conformations, of the order of the overall stability of the protein. This result may have important implications on the choice of free energy expressions used in software for protein structure prediction, protein design, and NMR refinement

    A Rigidifying Salt-Bridge Favors the Activity of Thermophilic Enzyme at High Temperatures at the Expense of Low-Temperature Activity

    Get PDF
    Although enzymes from thermophiles thriving in hot habitats are more stable than their mesophilic homologs, they are often less active at low temperatures. One theory suggests that extra stabilizing interactions found in thermophilic enzymes may increase their rigidity and decrease enzymatic activity at lower temperatures. We used acylphosphatase as a model to study how flexibility affects enzymatic activity. This enzyme has a unique structural feature in that an invariant arginine residue, which takes part in catalysis, is restrained by a salt-bridge in the thermophilic homologs but not in its mesophilic homologs. Here, we demonstrate the trade-offs between flexibility and enzymatic activity by disrupting the salt-bridge in a thermophilic acylphosphatase and introducing it in the mesophilic human homolog. Our results suggest that the salt-bridge is a structural adaptation for thermophilic acylphosphatases as it entropically favors enzymatic activity at high temperatures by restricting the flexibility of the active-site residue. However, at low temperatures the salt-bridge reduces the enzymatic activity because of a steeper temperature-dependency of activity

    Association between LTA, TNF and AGER Polymorphisms and Late Diabetic Complications

    Get PDF
    BACKGROUND: Several candidate genes on the short arm of chromosome 6 including the HLA locus, TNF, LTA and AGER could be associated with late diabetic complications. The aim of our study was therefore to explore whether polymorphisms (TNF -308 G-->A, LTA T60N C-->A and AGER -374 T-->A) in these genes alone or together (as haplotypes) increased the risk for diabetic complications. METHODOLOGY/PRINCIPAL FINDINGS: The studied polymorphisms were genotyped in 742 type 1 and 2957 type 2 diabetic patients as well as in 206 non-diabetic control subjects. The Haploview program was used to analyze putative linkage disequilibrium between studied polymorphisms. The TNF, LTA and AGER polymorphisms were associated with the HLA-DQB1 risk genotypes. The AGER -374 A allele was more common in type 1 diabetic patients with than without diabetic nephropathy (31.2 vs. 28.4%, p = 0.007). In a logistic regression analysis, the LTA but not the AGER polymorphism was associated with diabetic nephropathy (OR 2.55[1.11-5.86], p = 0.03). The AGER -374 A allele was associated with increased risk of sight threatening retinopathy in type 2 diabetic patients (1.65[1.11-2.45], p = 0.01) and also with increased risk for macrovascular disease in type 1 diabetic patients (OR 2.05[1.19-3.54], p = 0.01), but with decreased risk for macrovascular disease in type 2 diabetic patients (OR 0.66[0.49-0.90], p = 0.009). The TNF A allele was associated with increased risk for macrovascular complications in type 2 (OR 1.53 [1.04-2.25], p = 0.03, but not in type 1 diabetic patients. CONCLUSIONS/SIGNIFICANCE: The association between diabetic complications and LTA, TNF and AGER polymorphisms is complex, with partly different alleles conferring susceptibility in type 1 and type 2 diabetic patients. We can not exclude the possibility that the genes are part of a large haplotype block that also includes HLA-DQB1 risk genotypes

    The interferon gamma gene polymorphism +874 A/T is associated with severe acute respiratory syndrome

    Get PDF
    BACKGROUND: Cytokines play important roles in antiviral action. We examined whether polymorphisms of IFN-γ,TNF-α and IL-10 affect the susceptibility to and outcome of severe acute respiratory syndrome (SARS). METHODS: A case-control study was carried out in 476 Chinese SARS patients and 449 healthy controls. We tested the polymorphisms of IFN-γ,TNF-α and IL-10 for their associations with SARS. RESULTS: IFN-γ +874A allele was associated with susceptibility to SARS in a dose-dependent manner (P < 0.001). Individuals with IFN-γ +874 AA and AT genotype had a 5.19-fold (95% Confidence Interval [CI], 2.78-9.68) and 2.57-fold (95% CI, 1.35-4.88) increased risk of developing SARS respectively. The polymorphisms of IL-10 and TNF-α were not associated with SARS susceptibility. CONCLUSION: IFN-γ +874A allele was shown to be a risk factor in SARS susceptibility

    Peptide Conformer Acidity Analysis of Protein Flexibility Monitored by Hydrogen Exchange†

    Get PDF
    ABSTRACT: The amide hydrogens that are exposed to solvent in the high-resolution X-ray structures of ubiquitin, FK506-binding protein, chymotrypsin inhibitor 2, and rubredoxin span a billion-fold range in hydroxide-catalyzed exchange rates which are predictable by continuum dielectric methods. To facilitate analysis of transiently accessible amides, the hydroxide-catalyzed rate constants for every backbone amide of ubiquitin were determined under near physiological conditions. With the previously reported NMR-restrained molecular dynamics ensembles of ubiquitin (PDB codes 2NR2 and 2K39) used as representations of the Boltzmann-weighted conformational distribution, nearly all of the exchange rates for the highly exposed amides were more accurately predicted than by use of the high-resolution X-ray structure. More strikingly, predictions for the amide hydrogens of the NMR relaxation-restrained ensemble that become exposed to solvent in more than one but less than half of the 144 protein conformations in this ensemble were almost as accurate. In marked contrast, the exchange rates for many of the analogous amides in the residual dipolar coupling-restrained ubiquitin ensemble are substantially overestimated, as was particularly evident for the Ile 44 to Lys 48 segment which constitutes the primary interaction site for the proteasome targeting enzymes involved in polyubiquitylation. For both ensembles, “excited state ” conformers in this active site region having markedly elevated peptide acidities are represented at a population level that is 102 to 103 abov

    Genes and structure of selected cytokines involved in pathogenesis of psoriasis.

    Full text link
    corecore