1,251 research outputs found

    How to assist probationers with debt problems during supervision?:A qualitative study into the experiences of both probation officers and clients

    Get PDF
    Little research exists on what works in the supervision of offenders with debt problems. This qualitative study aims to provide insight into the barriers probation officers and clients experience during supervision regarding debt and the support that clients need. Interviews were conducted with 33 Dutch probation officers and 16 clients. The results show that debt often negatively influences clients’ lives and hinders their resocialization. Probation officers lack effective methods to support clients with debt problems. To adequately help clients with debt problems, probation officers should obtain more knowledge about effective interventions and collaborate more closely with debt specialists from the probation supervision outset

    Ferromagnetic Domain Structure of La0.78Ca0.22MnO3 Single Crystals

    Full text link
    The magneto-optical technique has been employed to observe spontaneous ferromagnetic domain structures in La0.78Ca0.22MnO3 single crystals. The magnetic domain topology was found to be correlated with the intrinsic twin structure of the investigated crystals. With decreasing temperature the regular network of ferromagnetic domains undergoes significant changes resulting in apparent rotation of the domain walls in the temperature range of 70-150 K. The apparent rotation of the domain walls can be understood in terms of the Jahn-Teller deformation of the orthorhombic unit cell, accompanied by additional twinning.Comment: 7 pages, 5 figures, to be published in PR

    Ferromagnetic domain structure of La0.78Ca0.22MnO3 single crystals

    Get PDF
    The magneto-optical technique has been employed to observe spontaneous ferromagnetic domain structures in La0.78Ca0.22MnO3 single crystals. The magnetic domain topology was found to be correlated with the intrinsic twin structure of the investigated crystals. With decreasing temperature the regular network of ferromagnetic domains undergoes significant changes resulting in apparent rotation of the domain walls in the temperature range of 70–150 K. The apparent rotation of the domain walls can be understood in terms of the Jahn-Teller deformation of the orthorhombic unit cell, accompanied by additional twinning

    Defect-unbinding and the Bose-glass transition in layered superconductors

    Full text link
    The low-field Bose-glass transition temperature in heavy-ion irradiated Bi_2Sr_2CaCu_2O_8+d increases progressively with increasing density of irradiation-induced columnar defects, but saturates for densities in excess of 1.5 x10^9 cm^-2. The maximum Bose-glass temperature corresponds to that above which diffusion of two-dimensional pancake vortices between different vortex lines becomes possible, and above which the ``line-like'' character of vortices is lost. We develop a description of the Bose-glass line that is in excellent quantitative agreement with the experimental line obtained for widely different values of track density and material parameters.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Experimental and numerical investigation of backward erosion piping in heterogeneous sands

    Get PDF
    Backward erosion piping is a relevant failure mechanism for water–retaining structures that determines uncertainty in residual flooding hazard and risk mapping. The occurrence of piping can be predicted using the Sellmeijer model, which is developed and validated for homogeneous granular layers. However, the subsurface encountered below levees can be far from homogeneous. Previous laboratory tests indicated a substantial increase of piping resistance in sand samples with variation of properties in the path of the pipe. In the research described in this paper the process of backward erosion piping in heterogeneous sands was investigated by means of small–scale experiments to study the influence of micro–scale and macro–scale heterogeneity. Numerical simulations of piping experiments with macro–scale heterogeneity were performed using a 2D groundwater flow model extended with a piping module and a 3D groundwater flow model

    Suppression of surface barrier in superconductors by columnar defects

    Full text link
    We investigate the influence of columnar defects in layered superconductors on the thermally activated penetration of pancake vortices through the surface barrier. Columnar defects, located near the surface, facilitate penetration of vortices through the surface barrier, by creating ``weak spots'', through which pancakes can penetrate into the superconductor. Penetration of a pancake mediated by an isolated column, located near the surface, is a two-stage process involving hopping from the surface to the column and the detachment from the column into the bulk; each stage is controlled by its own activation barrier. The resulting effective energy is equal to the maximum of those two barriers. For a given external field there exists an optimum location of the column for which the barriers for the both processes are equal and the reduction of the effective penetration barrier is maximal. At high fields the effective penetration field is approximately two times smaller than in unirradiated samples. We also estimate the suppression of the effective penetration field by column clusters. This mechanism provides further reduction of the penetration field at low temperatures.Comment: 8 pages, 9 figures, submitted to Phys. Rev.

    Thermal Suppression of Strong Pinning

    Full text link
    We study vortex pinning in layered type-II superconductors in the presence of uncorrelated disorder for decoupled layers. Introducing the new concept of variable-range thermal smoothing, we describe the interplay between strong pinning and thermal fluctuations. We discuss the appearance and analyze the evolution in temperature of two distinct non-linear features in the current-voltage characteristics. We show how the combination of layering and electromagnetic interactions leads to a sharp jump in the critical current for the onset of glassy response as a function of temperature.Comment: LaTeX 2.09, 4 pages, 2 figures, submitted to Phys. Rev. Let

    Supercooling of the disordered vortex lattice in Bi_2Sr_2CaCu_2O_8+d

    Full text link
    Time-resolved local induction measurements near to the vortex lattice order-disorder transition in optimally doped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} single crystals shows that the high-field, disordered phase can be quenched to fields as low as half the transition field. Over an important range of fields, the electrodynamical behavior of the vortex system is governed by the co-existence of the two phases in the sample. We interpret the results in terms of supercooling of the high-field phase and the possible first order nature of the order-disorder transition at the ``second peak''.Comment: 4 pages, 3 figures. Submitted to Nature, July 10th, 1999; Rejected August 8th for lack of broad interest Submitted to Physical Review Letters September 10th, 199

    Strong Pinning in High Temperature Superconductors

    Full text link
    Detailed measurements of the critical current density jc of YBa2Cu3O7 films grown by pulsed laser deposition reveal the increase of jc as function of the filmthickness. Both this thickness dependence and the field dependence of the critical current are consistently described using a generalization of the theory of strong pinning of Ovchinnikov and Ivlev [Phys. Rev. B 43, 8024 (1991)]. From the model, we deduce values of the defect density (10^21 m^-3) and the elementary pinning force, which are in good agreement with the generally accepted values for Y2O3-inclusions. In the absence of clear evidence that the critical current is determined by linear defects or modulations of the film thickness, our model provides an alternative explanation for the rather universal field dependence of the critical current density found in YBa2Cu3O7 films deposited by different methods.Comment: 11 pages; 8 Figures; Published Phys. Rev. B 66, 024523 (2002

    Collective pinning of a frozen vortex liquid in ultrathin superconducting YBa_2Cu_3O_7 films

    Full text link
    The linear dynamic response of the two-dimensional (2D) vortex medium in ultrathin YBa_2Cu_3O_7 films was studied by measuring their ac sheet impedance Z over a broad range of frequencies \omega. With decreasing temperature the dissipative component of Z exhibits, at a temperature T*(\omega) well above the melting temperature of a 2D vortex crystal, a crossover from a thermally activated regime involving single vortices to a regime where the response has features consistent with a description in terms of a collectively pinned vortex manifold. This suggests the idea of a vortex liquid which, below T*(\omega), appears to be frozen at the time scales 1/\omega of the experiments.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
    • …
    corecore