180 research outputs found

    Co and No Binding in Inducible Nitric Oxide Synthase

    Get PDF

    Wavelet-based background and noise subtraction for fluorescence microscopy images

    Get PDF
    Fluorescence microscopy images are inevitably contaminated by background intensity contributions. Fluorescence from out-of-focus planes and scattered light are important sources of slowly varying, low spatial frequency background, whereas background varying from pixel to pixel (high frequency noise) is introduced by the detection system. Here we present a powerful, easy-to-use software, wavelet-based background and noise subtraction (WBNS), which effectively removes both of these components. To assess its performance, we apply WBNS to synthetic images and compare the results quantitatively with the ground truth and with images processed by other background removal algorithms. We further evaluate WBNS on real images taken with a light-sheet microscope and a super-resolution stimulated emission depletion microscope. For both cases, we compare the WBNS algorithm with hardware-based background removal techniques and present a quantitative assessment of the results. WBNS shows an excellent performance in all these applications and significantly enhances the visual appearance of fluorescence images. Moreover, it may serve as a pre-processing step for further quantitative analysis

    Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Get PDF
    Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although, specific marker proteins have been developed to visualize actin cables in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here, we observed actin cables using tropomyosin (TpmA) and Lifeact fused to fluorescent proteins in living Aspergillus nidulans hyphae and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules

    Allele-specific endogenous tagging and quantitative analysis of β-catenin in colorectal cancer cells

    Get PDF
    Wnt signaling plays important roles in development, homeostasis, and tumorigenesis. Mutations in β-catenin that activate Wnt signaling have been found in colorectal and hepatocellular carcinomas. However, the dynamics of wild-type and mutant forms of β-catenin are not fully understood. Here, we genome-engineered fluorescently tagged alleles of endogenous β-catenin in a colorectal cancer cell line. Wild-type and oncogenic mutant alleles were tagged with different fluorescent proteins, enabling the analysis of both variants in the same cell. We analyzed the properties of both β-catenin alleles using immunoprecipitation, immunofluorescence, and fluorescence correlation spectroscopy approaches, revealing distinctly different biophysical properties. In addition, activation of Wnt signaling by treatment with a GSK3β inhibitor or a truncating APC mutation modulated the wild-type allele to mimic the properties of the mutant β-catenin allele. The one-step tagging strategy demonstrates how genome engineering can be employed for the parallel functional analysis of different genetic variants

    Two plus one is almost three: a fast approximation for multi-view deconvolution

    Get PDF
    Multi-view deconvolution is a powerful image-processing tool for light sheet fluorescence microscopy, providing isotropic resolution and enhancing the image content. However, performing these calculations on large datasets is computationally demanding and time-consuming even on high-end workstations. Especially in long-time measurements on developing animals, huge amounts of image data are acquired. To keep them manageable, redundancies should be removed right after image acquisition. To this end, we report a fast approximation to three-dimensional multi-view deconvolution, denoted 2D+1D multi-view deconvolution, which is able to keep up with the data flow. It first operates on the two dimensions perpendicular and subsequently on the one parallel to the rotation axis, exploiting the rotational symmetry of the point spread function along the rotation axis. We validated our algorithm and evaluated it quantitatively against two-dimensional and three-dimensional multi-view deconvolution using simulated and real image data. 2D+1D multi-view deconvolution takes similar computation time but performs markedly better than the two-dimensional approximation only. Therefore, it will be most useful for image processing in time-critical applications, where the full 3D multi-view deconvolution cannot keep up with the data flow

    Cytoplasmic Transport Machinery of the SPF27 Homologue Num1 in Ustilago maydis

    Get PDF
    In the phytopathogenic basidiomycete Ustilago maydis, the Num1 protein has a pivotal function in hyphal morphogenesis. Num1 functions as a core component of the spliceosome-associated Prp19/CDC5 complex (NTC). The interaction of Num1 with the kinesin motor Kin1 suggests a connection between a component of the splicing machinery and cytoplasmic trafficking processes. Previously it was shown that Num1 localizes predominantly in the nucleus; however, due to the diffraction-limited spatial resolution of conventional optical microscopy, it was not possible to attribute the localization to specific structures within the cytoplasm. We have now employed super-resolution localization microscopy to visualize Num1 in the cytoplasm by fusing it to a tandem dimeric Eos fluorescent protein (tdEosFP). The Num1 protein is localized within the cytoplasm with an enhanced density in the vicinity of microtubules. Num1 movement is found predominantly close to the nucleus. Movement is dependent on its interaction partner Kin1, but independent of Kin3. Our results provide strong evidence that, in addition to its involvement in splicing in the nucleus, Num1 has an additional functional role in the cytosol connected to the Kin1 motor protein

    Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells

    Get PDF
    Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live Aspergillus nidulans cells expressing the photoconvertible protein mEosFPthermo fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFPthermo in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s−1) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s−1) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension

    Fast-exchanging spirocyclic rhodamine probes for aptamer-based super-resolution RNA imaging

    Get PDF
    Live-cell RNA imaging with high spatial and temporal resolution remains a major challenge. Here we report the development of RhoBAST:SpyRho, a fluorescent light-up aptamer (FLAP) system ideally suited for visualizing RNAs in live or fixed cells with various advanced fluorescence microscopy modalities. Overcoming problems associated with low cell permeability, brightness, fluorogenicity, and signal-to-background ratio of previous fluorophores, we design a novel probe, SpyRho (Spirocyclic Rhodamine), which tightly binds to the RhoBAST aptamer. High brightness and fluorogenicity is achieved by shifting the equilibrium between spirolactam and quinoid. With its high affinity and fast ligand exchange, RhoBAST:SpyRho is a superb system for both super-resolution SMLM and STED imaging. Its excellent performance in SMLM and the first reported super-resolved STED images of specifically labeled RNA in live mammalian cells represent significant advances over other FLAPs. The versatility of RhoBAST:SpyRho is further demonstrated by imaging endogenous chromosomal loci and proteins

    Effects of Laser Welding on Formability Aspects of Advanced High Strength Steel

    Get PDF
    Limiting dome height (LDH) tests were used to evaluate the formability of both base metal and laser butt welded blanks of AHSS (including High strength low alloy (HSLA), Dual phase (DP) steels of different grades). Mechanical properties of the base metal and welded blanks were assessed by uniaxial tensile and biaxial LDH tests, and related to measured microhardness distributions across the welds. The formability ratio of laser welded dual phase sheet steels generally decreases with increased base metal strength. A significant decrease of LDH was observed in the higher strength DP steel welded specimens due to the formation of a softened zone in the Heat Affected Zone(HAZ). Softened zone characteristics were correlated to the LDH. Larger softened zones led to a larger reduction in the LDH. HAZ softening has been shown to be a function of the base metal martensite content and the weld heat input. Formability also decreased with increased weld heat input. Both in experiment and numerical simulations strain is localized in the softened HAZ in the uniaxial tensile testing, indicating that strain localization decreases tensile strength and elongation of laser welds in DP980

    A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway

    Get PDF
    BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17 that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth
    • …
    corecore