349 research outputs found

    How digital is agriculture in a subset of countries from South America? Adoption and limitations

    Get PDF
    Digital agriculture (DA) can contribute solutions to meet an increase in healthy, nutritious, and affordable food demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. A systematic review and case studies from Brazil, Argentina, Uruguay, and Chile were conducted to address the following objectives: (1) quantify adoption of existing DA technologies, (2) identify limitations for DA adoption; and (3) summarise existing metrics to benchmark DA benefits. Level of DA adoption was led by Brazil and Argentina followed by Uruguay and at a slower rate, Chile. GPS guidance systems, mapping tools, mobile apps and remote sensing were the most adopted DA technologies in SA. The most reported limitations to adoption were technology cost, lack of training, limited number of companies providing services, and unclear benefits from DA. Across the case studies, there was no clear definition of DA. To mitigate some of these limitations, our findings suggest the need for a DA educational curriculum that can fulfill the demand for job skills such as data processing, analysis and interpretation. Regional efforts are needed to standardise these metrics. This will allow stakeholders to design targeted initiatives to promote DA towards sustainability of food production in the region

    Lentiviral Mediated Transgenesis by In Vivo Manipulation of Spermatogonial Stem Cells

    Get PDF
    This report describes a technique for the generation of transgenic mice by in vivo manipulation of spermatogonial stem cells with a high rate of success. Spermatogonial stem cells (SSCs) in pre-pubescent animals were infected in vivo with recombinant lentiviruses expressing EGFP-f and mated with normal females. All male pre-founder mice produced transgenic pups with an overall success rate of over 60%. The transgene was heritable and the pre-founder mice could be used in multiple mating experiments. This technology could be used to perform overexpression/knockdown screens in vivo using bar-coded lentiviruses, thus permitting the design of genetic screens in the mouse. Further, this technology could be adapted to other laboratory animals resulting in the generation of model systems that closely approximate human development and disease

    Cloning and characterization of a novel alternatively spliced transcript of the human CHD7 putative helicase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>CHD7 </it>(Chromodomain Helicase DNA binding protein 7) gene encodes a member of the chromodomain family of ATP-dependent chromatin remodeling enzymes. Mutations in the <it>CHD7 </it>gene are found in individuals with CHARGE, a syndrome characterized by multiple birth malformations in several tissues. CHD7 was identified as a binding partner of PBAF complex (Polybromo and BRG Associated Factor containing complex) playing a central role in the transcriptional reprogramming process associated to the formation of multipotent migratory neural crest, a transient cell population associated with the genesis of various tissues. <it>CHD7 </it>is a large gene containing 38 annotated exons and spanning 200 kb of genomic sequence. Although genes containing such number of exons are expected to have several alternative transcripts, there are very few evidences of alternative transcripts associated to <it>CHD7 </it>to date indicating that alternative splicing associated to this gene is poorly characterized.</p> <p>Findings</p> <p>Here, we report the cloning and characterization by experimental and computational studies of a novel alternative transcript of the human <it>CHD7 </it>(named CHD7 CRA_e), which lacks most of its coding exons. We confirmed by overexpression of CHD7 CRA_e alternative transcript that it is translated into a protein isoform lacking most of the domains displayed by the canonical isoform. Expression of the CHD7 CRA_e transcript was detected in normal liver, in addition to the DU145 human prostate carcinoma cell line from which it was originally isolated.</p> <p>Conclusions</p> <p>Our findings indicate that the splicing event associated to the CHD7 CRA_e alternative transcript is functional. The characterization of the CHD7 CRA_e novel isoform presented here not only sets the basis for more detailed functional studies of this isoform, but, also, contributes to the alternative splicing annotation of the <it>CHD7 </it>gene and the design of future functional studies aimed at the elucidation of the molecular functions of its gene products.</p

    How digital is agriculture in a subset of countries from South America? Adoption and limitations.

    Get PDF
    Abstract. Digital agriculture (DA) can contribute solutions to meet an increase in healthy, nutritious, and affordable food demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. A systematic review and case studies from Brazil, Argentina, Uruguay, and Chile were conducted to address the following objectives: (1) quantify adoption of existing DA technologies, (2) identify limitations for DA adoption; and (3) summarise existing metrics to benchmark DA benefits. Level of DA adoption was led by Brazil and Argentina followed by Uruguay and at a slower rate, Chile. GPS guidance systems, mapping tools, mobile apps and remote sensing were the most adopted DA technologies in SA. The most reported limitations to adoption were technology cost, lack of training, limited number of companies providing services, and unclear benefits from DA. Across the case studies, there was no clear definition of DA. To mitigate some of these limitations, our findings suggest the need for a DA educational curriculum that can fulfill the demand for job skills such as data processing, analysis and interpretation. Regional efforts are needed to standardise these metrics. This will allow stakeholders to design targeted initiatives to promote DA towards sustainability of food production in the region.Special issue

    Impaired Sprouting and Axonal Atrophy in Cerebellar Climbing Fibres following In Vivo Silencing of the Growth-Associated Protein GAP-43

    Get PDF
    The adult mammalian central nervous system has a limited ability to establish new connections and to recover from traumatic or degenerative events. The olivo-cerebellar network represents an excellent model to investigate neuroprotection and repair in the brain during adulthood, due to its high plasticity and ordered synaptic organization. To shed light on the molecular mechanisms involved in these events, we focused on the growth-associated protein GAP-43 (also known as B-50 or neuromodulin). During development, this protein plays a crucial role in growth and in branch formation of neurites, while in the adult it is only expressed in a few brain regions, including the inferior olive (IO) where climbing fibres (CFs) originate. Following axotomy GAP-43 is usually up-regulated in association with regeneration. Here we describe an in vivo lentiviral-mediated gene silencing approach, used for the first time in the olivo-cerebellar system, to efficiently and specifically downregulate GAP-43 in rodents CFs. We show that lack of GAP-43 causes an atrophy of the CF in non-traumatic conditions, consisting in a decrease of its length, branching and number of synaptic boutons. We also investigated CF regenerative ability by inducing a subtotal lesion of the IO. Noteworthy, surviving CFs lacking GAP-43 were largely unable to sprout on surrounding Purkinje cells. Collectively, our results demonstrate that GAP-43 is essential both to maintain CFs structure in non-traumatic condition and to promote sprouting after partial lesion of the IO

    Quantitative assessment on the cloning efficiencies of lentiviral transfer vectors with a unique clone site

    Get PDF
    Lentiviral vectors (LVs) are powerful tools for transgene expression in vivo and in vitro. However, the construction of LVs is of low efficiency, due to the large sizes and lack of proper clone sites. Therefore, it is critical to develop efficient strategies for cloning LVs. Here, we reported a combinatorial strategy to efficiently construct LVs using EGFP, hPlk2 wild type (WT) and mutant genes as inserts. Firstly, site-directed mutagenesis (SDM) was performed to create BamH I site for the inserts; secondly, pWPI LV was dephosphorylated after BamH I digestion; finally, the amounts and ratios of the insert and vector DNA were optimized to increase monomeric ligation. Our results showed that the total percentage of positive clones was approximately 48%±7.6%. Using this method, almost all the vectors could be constructed through two or three minipreps. Therefore, our study provided an efficient method for constructing large-size vectors

    Isogenic Pairs of Wild Type and Mutant Induced Pluripotent Stem Cell (iPSC) Lines from Rett Syndrome Patients as In Vitro Disease Model

    Get PDF
    Rett syndrome (RTT) is an autism spectrum developmental disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene. Excellent RTT mouse models have been created to study the disease mechanisms, leading to many important findings with potential therapeutic implications. These include the identification of many MeCP2 target genes, better understanding of the neurobiological consequences of the loss- or mis-function of MeCP2, and drug testing in RTT mice and clinical trials in human RTT patients. However, because of potential differences in the underlying biology between humans and common research animals, there is a need to establish cell culture-based human models for studying disease mechanisms to validate and expand the knowledge acquired in animal models. Taking advantage of the nonrandom pattern of X chromosome inactivation in female induced pluripotent stem cells (iPSC), we have generated isogenic pairs of wild type and mutant iPSC lines from several female RTT patients with common and rare RTT mutations. R294X (arginine 294 to stop codon) is a common mutation carried by 5–6% of RTT patients. iPSCs carrying the R294X mutation has not been studied. We differentiated three R294X iPSC lines and their isogenic wild type control iPSC into neurons with high efficiency and consistency, and observed characteristic RTT pathology in R294X neurons. These isogenic iPSC lines provide unique resources to the RTT research community for studying disease pathology, screening for novel drugs, and testing toxicology

    Berberine Chloride Mediates Its Anti-Leishmanial Activity via Differential Regulation of the Mitogen Activated Protein Kinase Pathway in Macrophages

    Get PDF
    BACKGROUND: A complex interplay between Leishmania and macrophages influences parasite survival and necessitates disruption of signaling molecules, eventually resulting in impairment of macrophage function. In this study, we demonstrate the immunomodulatory activity of Berberine chloride in Leishmania infected macrophages. PRINCIPAL FINDINGS: The IC(50) of Berberine chloride, a quaternary isoquinoline alkaloid was tested in an amastigote macrophage model and its safety index measured by a cell viability assay. It eliminated intracellular amastigotes, the IC(50) being 2.8 fold lower than its IC(50) in promastigotes (7.10 µM vs. 2.54 µM) and showed a safety index >16. Levels of intracellular and extracellular nitric oxide (NO) as measured by flow cytometry and Griess assay respectively showed that Berberine chloride in Leishmania infected macrophages increased production of NO. Measurement of the mRNA expression of iNOS, IL-12 and IL-10 by RT-PCR along with levels of IL-12p40 and IL-10 by ELISA showed that in infected macrophages, Berberine chloride enhanced expression of iNOS and IL-12p40, concomitant with a downregulation of IL-10. The phosphorylation status of extracellular signal related kinase (ERK1/2) and p38 mitogen activated protein kinase (p38 MAPK) was studied by western blotting. In infected macrophages, Berberine chloride caused a time dependent activation of p38 MAPK along with deactivation of ERK1/2; addition of a p38 MAPK inhibitor SB203580 inhibited the increased generation of NO and IL-12p40 by Berberine chloride as also prevented its decrease of IL-10. CONCLUSIONS: Berberine chloride modulated macrophage effector responses via the mitogen activated protein kinase (MAPK) pathway, highlighting the importance of MAPKs as an antiparasite target

    Knockdown of E2f1 by RNA interference impairs proliferation of rat cells in vitro

    Get PDF
    E2F1 plays a key role in cell-cycle regulation in mammals, since its transcription factor activity controls genes required for DNA synthesis and apoptosis. E2F1 deregulation is a common feature among different tumor types and can be a major cause of cell proliferation. Thus, blocking E2F1 expression by RNA interference represents a promising therapeutic approach. In this study, the introduction of specific short hairpin RNAs (shRNAs) reduced E2f1 expression by up to 77%, and impaired rat glioma cell proliferation by approximately 70%, as compared to control cells. Furthermore, we investigated the expression of E2f1 target genes, Cyclin A and Cyclin E. Cyclin A was found to be down-regulated, whereas Cyclin E had similar expression to control cells, indicating that gene(s) other than E2f1 control its transcription. Other E2f family members, E2f2 and E2f3, which have been classified in the same subgroup of transcriptional activators, were also analyzed. Expression of both E2f2 and E2f3 was similar to control cells, showing no cross-inactivation or up-regulation to compensate for the absence of E2f1. Nevertheless, their expression was insufficient to maintain the initial proliferation potential. Taken together, our results suggest that shE2f1 is a promising therapy to control tumor cell proliferation

    Storage of Factor VIII Variants with Impaired von Willebrand Factor Binding in Weibel-Palade Bodies in Endothelial Cells

    Get PDF
    BACKGROUND: Point mutations resulting in reduced factor VIII (FVIII) binding to von Willebrand factor (VWF) are an important cause of mild/moderate hemophilia A. Treatment includes desmopressin infusion, which concomitantly increases VWF and FVIII plasma levels, apparently from storage pools containing both proteins. The source of these VWF/FVIII co-storage pools and the mechanism of granule biogenesis are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: We studied intracellular trafficking of FVIII variants implicated in mild/moderate hemophilia A together with VWF in HEK293 cells and primary endothelial cells. The role of VWF binding was addressed using FVIII variants displaying reduced VWF interaction. Binding studies using purified FVIII proteins revealed moderate (Arg2150His, Del2201, Pro2300Ser) to severe (Tyr1680Phe, Ser2119Tyr) VWF binding defects. Expression studies in HEK293 cells and primary endothelial cells revealed that all FVIII variants were present within VWF-containing organelles. Quantitative studies showed that the relative amount of FVIII storage was independent of various mutations. Substantial amounts of FVIII variants are co-stored in VWF-containing storage organelles, presumably by virtue of their ability to interact with VWF at low pH. CONCLUSIONS: Our data suggest that the potential of FVIII co-storage with VWF is not affected in mild/moderate hemophilia A caused by reduced FVIII/VWF interaction in the circulation. These data support the hypothesis that Weibel-Palade bodies comprise the desmopressin-releasable FVIII storage pool in vivo
    corecore