23 research outputs found
Coupling of Rotational Motion with Shape Fluctuations of Core-shell Microgels Having Tunable Softness
The influence of shape fluctuations on deformable thermosensitive microgels
in aqueous solution is investigated by dynamic light scattering (DLS) and
depolarized dynamic light scattering (DDLS). The systems under study consist of
a solid core of polystyrene and a thermosensitive shell of cross-linked
poly(N-isopropylacrylamide) (PNIPA) without and with embedded palladium
nanoparticles. PNIPA is soluble in water, but has a lower critical solution
temperature at 32 C (LCST). Below the LCST the PNIPA shell is swollen. Here we
find that besides translational and rotational diffusion, the particles exhibit
additional dynamics resulting from shape fluctuations. This leads to a
pronounced apparent increase of the rotational diffusion coefficient. Above the
transition temperature the shell collapses and provides a rather tight envelope
of the core. In this state the dynamics of the shell is frozen and the
core-shell particles behave like hard spheres. A simple physical model is
presented to capture and explain the essentials of the coupling of rotational
motion and shape fluctuations.Comment: 9 pages, 7 figure
Transport of Folded Proteins by the Tat System
The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations