15,242 research outputs found

    A programmable VLSI filter architecture for application in real-time vision processing systems

    Get PDF
    An architecture is proposed for the realization of real-time edge-extraction filtering operation in an Address-Event-Representation (AER) vision system. Furthermore, the approach is valid for any 2D filtering operation as long as the convolutional kernel F(p,q) is decomposable into an x-axis and a y-axis component, i.e. F(p,q)=H(p)V(q), for some rotated coordinate system [p,q]. If it is possible to find a coordinate system [p,q], rotated with respect to the absolute coordinate system a certain angle, for which the above decomposition is possible, then the proposed architecture is able to perform the filtering operation for any angle we would like the kernel to be rotated. This is achieved by taking advantage of the AER and manipulating the addresses in real time. The proposed architecture, however, requires one approximation: the product operation between the horizontal component H(p) and vertical component V(q) should be able to be approximated by a signed minimum operation without significant performance degradation. It is shown that for edge-extraction applications this filter does not produce performance degradation. The proposed architecture is intended to be used in a complete vision system known as the Boundary-Contour-System and Feature-Contour-System Vision Model, proposed by Grossberg and collaborators. The present paper proposes the architecture, provides a circuit implementation using MOS transistors operated in weak inversion, and shows behavioral simulation results at the system level operation and electrical simulation and experimental results at the circuit level operation of some critical subcircuits

    Very wide range tunable CMOS/bipolar current mirrors with voltage clamped input

    Get PDF
    In low power current mode signal processing circuits it is often necessary to use current mirrors to replicate and amplify/attenuate current signals and clamp the voltage of nodes with high parasitic capacitances so that the smallest currents do not introduce unacceptable delays. The use of tunable active-input current mirrors would meet both requirements. In conventional active-input current mirrors, stability compensation is required. Furthermore, once stabilized, the input current cannot be made arbitrarily small. In this paper we introduce two new active-input current mirrors that clamp their input node to a given voltage. One of them does not require compensation, while the other may under some circumstances. However, for both, the input current may take any value. The mirrors can operate with their transistors biased in strong inversion, weak inversion, or even as CMOS compatible lateral bipolar devices. If it is biased in weak inversion or as lateral bipolars, the current mirror gain can be tuned over a very wide range. According to the experimental measurements provided in this paper, the input current may spawn beyond nine decades and the current mirror gain can be tuned over 11 decades. As an application example, a sinusoidal gm-C-based VCO has been fabricated, whose oscillation frequency could be tuned for over seven decades, between 74 mHz and 1 MHz.Office of Naval Research (USA) N00014-95-1-040

    An Assessment of the Academic Impact of Shock Society Members

    Get PDF
    Professional society membership enhances career development and productivity by offering opportunities for networking and learning about recent advances in the field. The quality and contribution of such societies can be measured in part through the academic productivity, career status, and funding success rates of their members. Here, using Scopus, NIH RePORTER, and departmental websites, we compare characteristics of the Shock Society membership to those of the top 55 NIH-funded American university and hospital-based departments of surgery. Shock Society members' mean number of publications, citations and H-indices were all significantly higher than those of non-members in surgery departments (P < 0.001). A higher percentage of members also have received funding from the NIH (42.5% vs. 18.5%, P < 0.001). Regression analysis indicated that members were more likely to have NIH funding compared with non-members (OR 1.46, 95% CI 1.12-1.916). Trauma surgeons belonging to the Shock Society had a higher number of publications and greater NIH funding than those who did not (130.4 vs. 42.7, P < 0.001; 40.4% vs. 8.5%, P < 0.001). Aggregate academic metrics from the Shock Society were superior to those of the Association for Academic Surgery and generally for the Society of University Surgeons as well. These data indicate that the Shock Society represents a highly academic and productive group of investigators. For surgery faculty, membership is associated with greater academic productivity and career advancement. While it is difficult to ascribe causation, certainly the Shock Society might positively influence careers for its members

    A Bijection between Atomic Partitions and Unsplitable Partitions

    Full text link
    In the study of the algebra NCSym\mathrm{NCSym} of symmetric functions in noncommutative variables, Bergeron and Zabrocki found a free generating set consisting of power sum symmetric functions indexed by atomic partitions. On the other hand, Bergeron, Reutenauer, Rosas, and Zabrocki studied another free generating set of NCSym\mathrm{NCSym} consisting of monomial symmetric functions indexed by unsplitable partitions. Can and Sagan raised the question of finding a bijection between atomic partitions and unsplitable partitions. In this paper, we provide such a bijection.Comment: 6 page

    Constraining the Milky Way potential using the dynamical kinematic substructures

    Get PDF
    We present a method to constrain the potential of the non-axisymmetric components of the Galaxy using the kinematics of stars in the solar neighborhood. The basic premise is that dynamical substructures in phase-space (i.e. due to the bar and/or spiral arms) are associated with families of periodic or irregular orbits, which may be easily identified in orbital frequency space. We use the "observed" positions and velocities of stars as initial conditions for orbital integrations in a variety of gravitational potentials. We then compute their characteristic frequencies, and study the structure present in the frequency maps. We find that the distribution of dynamical substructures in velocity- and frequency-space is best preserved when the integrations are performed in the "true" gravitational potential.Comment: 2 pages, 4 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (Apr. 17-22, 2011

    Novel achromatic single reflection quarter-wave retarder: design and measurement

    Get PDF
    In this work, we present an achromatic quarter-wave retarder whose design is based upon the reflection properties of an isotropic-anisotropic interface. In theory, it is possible to obtain a π/2 phase shift by means of a total internal reflection at an isotropic-isotropic interface. However, in order to achieve such a phase shift, it is necessary to use a medium with a particularly high refractive index. We have previously shown that these phase shifts can be achieved by means of a total internal reflection in an isotropic-uniaxial interface, which allows the use of smaller refractive index media. By means of this property, we designed, built, and characterized a novel quarter-wave retarder that makes it possible to obtain circularly polarized light from a linear polarization state. We developed some guidelines that allowed us to obtain a device of competitive performance, low cost, and manageable manufacture.Fil: Veiras, Francisco Ezequiel. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Raffa, G.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; ArgentinaFil: Caré, D.. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; ArgentinaFil: Perez, Liliana Ines. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garea, María Teresa. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; Argentin
    • …
    corecore