285 research outputs found
S-Branes, Negative Tension Branes and Cosmology
A general class of solutions of string background equations is studied and
its physical interpretations are presented. These solutions correspond to
generalizations of the standard black p-brane solutions to surfaces with
curvature k=-1,0. The relation with the recently introduced S-branes is
provided. The mass, charge, entropy and Hawking temperature are computed,
illustrating the interpretation in terms of negative tension branes. Their
cosmological interpretation is discussed as well as their potential instability
under small perturbations.Comment: 10 pages. Talks given at: SUSY'02, ``the 10th International
Conference on Supersymmetry and Unification of Fundamental Interactions'',
DESY, Hamburg, Germany, 17-23 June 2002, and ``The 1st International
Conference on String Phenomenology'', Oxford, July 6 - 11, 2002. References
adde
Modulated Reheating and Large Non-Gaussianity in String Cosmology
A generic feature of the known string inflationary models is that the same
physics that makes the inflaton lighter than the Hubble scale during inflation
often also makes other scalars this light. These scalars can acquire
isocurvature fluctuations during inflation, and given that their VEVs determine
the mass spectrum and the coupling constants of the effective low-energy field
theory, these fluctuations give rise to couplings and masses that are modulated
from one Hubble patch to another. These seem just what is required to obtain
primordial adiabatic fluctuations through conversion into density perturbations
through the `modulation mechanism', wherein reheating takes place with
different efficiency in different regions of our Universe. Fluctuations
generated in this way can generically produce non-gaussianity larger than
obtained in single-field slow-roll inflation; potentially observable in the
near future. We provide here the first explicit example of the modulation
mechanism at work in string cosmology, within the framework of LARGE Volume
Type-IIB string flux compactifications. The inflationary dynamics involves two
light Kaehler moduli: a fibre divisor plays the role of the inflaton whose
decay rate to visible sector degrees of freedom is modulated by the primordial
fluctuations of a blow-up mode (which is made light by the use of
poly-instanton corrections). We find the challenges of embedding the mechanism
into a concrete UV completion constrains the properties of the non-gaussianity
that is found, since for generic values of the underlying parameters, the model
predicts a local bi-spectrum with fNL of order `a few'. However, a moderate
tuning of the parameters gives also rise to explicit examples with fNL O(20)
potentially observable by the Planck satellite.Comment: 42 pages, 2 figure
Accurate Biomolecular Structures by the Nano-LEGO Approach: Pick the Bricks and Build Your Geometry
The determination of accurate equilibrium molecular structures plays a fundamental role for understanding many physical-chemical properties of molecules, ranging from the precise evaluation of the electronic structure to the analysis of the role played by dynamical and environmental effects in tuning their overall behavior. For small semi-rigid systems in the gas phase, state-of-the-art quantum chemical computations rival the most sophisticated experimental (from, for example, high-resolution spectroscopy) results. For larger molecules, more effective computational approaches must be devised. To this end, we have further enlarged the compilation of available semi-experimental (SE) equilibrium structures, now covering the most important fragments containing H, B, C, N, O, F, P, S, and Cl atoms collected in the new SE100 database. Next, comparison with geometries optimized by methods rooted in the density functional theory showed that the already remarkable results delivered by PW6B95 and, especially, rev-DSDPBEP86 functionals can be further improved by a linear regression (LR) approach. Use of template fragments (taken from the SE100 library) together with LR estimates for the missing interfragment parameters paves the route toward accurate structures of large molecules, as witnessed by the very small deviations between computed and experimental rotational constants. The whole approach has been implemented in a user-friendly tool, termed nano-LEGO, and applied to a number of demanding case studies
Cosmic acceleration from Abelian symmetry breaking
We discuss a consistent theory for a self-interacting vector field, breaking an Abelian symmetry in such a way to obtain an interesting behavior for its longitudinal polarization. In an appropriate decoupling limit, the dynamics of the longitudinal mode is controlled by Galileon interactions. The full theory away from the decoupling limit does not propagate ghost modes, and can be investigated in regimes where non-linearities become important. When coupled to gravity, this theory provides a candidate for dark energy, since it admits de Sitter cosmological solutions characterized by a technically natural value for the Hubble parameter. We also consider the homogeneous evolution when, besides the vector, additional matter in the form of perfect fluids is included. We find that the vector can have an important role in characterizing the universe expansion
- …