279 research outputs found

    S-Branes, Negative Tension Branes and Cosmology

    Full text link
    A general class of solutions of string background equations is studied and its physical interpretations are presented. These solutions correspond to generalizations of the standard black p-brane solutions to surfaces with curvature k=-1,0. The relation with the recently introduced S-branes is provided. The mass, charge, entropy and Hawking temperature are computed, illustrating the interpretation in terms of negative tension branes. Their cosmological interpretation is discussed as well as their potential instability under small perturbations.Comment: 10 pages. Talks given at: SUSY'02, ``the 10th International Conference on Supersymmetry and Unification of Fundamental Interactions'', DESY, Hamburg, Germany, 17-23 June 2002, and ``The 1st International Conference on String Phenomenology'', Oxford, July 6 - 11, 2002. References adde

    Modulated Reheating and Large Non-Gaussianity in String Cosmology

    Get PDF
    A generic feature of the known string inflationary models is that the same physics that makes the inflaton lighter than the Hubble scale during inflation often also makes other scalars this light. These scalars can acquire isocurvature fluctuations during inflation, and given that their VEVs determine the mass spectrum and the coupling constants of the effective low-energy field theory, these fluctuations give rise to couplings and masses that are modulated from one Hubble patch to another. These seem just what is required to obtain primordial adiabatic fluctuations through conversion into density perturbations through the `modulation mechanism', wherein reheating takes place with different efficiency in different regions of our Universe. Fluctuations generated in this way can generically produce non-gaussianity larger than obtained in single-field slow-roll inflation; potentially observable in the near future. We provide here the first explicit example of the modulation mechanism at work in string cosmology, within the framework of LARGE Volume Type-IIB string flux compactifications. The inflationary dynamics involves two light Kaehler moduli: a fibre divisor plays the role of the inflaton whose decay rate to visible sector degrees of freedom is modulated by the primordial fluctuations of a blow-up mode (which is made light by the use of poly-instanton corrections). We find the challenges of embedding the mechanism into a concrete UV completion constrains the properties of the non-gaussianity that is found, since for generic values of the underlying parameters, the model predicts a local bi-spectrum with fNL of order `a few'. However, a moderate tuning of the parameters gives also rise to explicit examples with fNL O(20) potentially observable by the Planck satellite.Comment: 42 pages, 2 figure

    Accurate Biomolecular Structures by the Nano-LEGO Approach: Pick the Bricks and Build Your Geometry

    Get PDF
    The determination of accurate equilibrium molecular structures plays a fundamental role for understanding many physical-chemical properties of molecules, ranging from the precise evaluation of the electronic structure to the analysis of the role played by dynamical and environmental effects in tuning their overall behavior. For small semi-rigid systems in the gas phase, state-of-the-art quantum chemical computations rival the most sophisticated experimental (from, for example, high-resolution spectroscopy) results. For larger molecules, more effective computational approaches must be devised. To this end, we have further enlarged the compilation of available semi-experimental (SE) equilibrium structures, now covering the most important fragments containing H, B, C, N, O, F, P, S, and Cl atoms collected in the new SE100 database. Next, comparison with geometries optimized by methods rooted in the density functional theory showed that the already remarkable results delivered by PW6B95 and, especially, rev-DSDPBEP86 functionals can be further improved by a linear regression (LR) approach. Use of template fragments (taken from the SE100 library) together with LR estimates for the missing interfragment parameters paves the route toward accurate structures of large molecules, as witnessed by the very small deviations between computed and experimental rotational constants. The whole approach has been implemented in a user-friendly tool, termed nano-LEGO, and applied to a number of demanding case studies

    Cosmic acceleration from Abelian symmetry breaking

    Get PDF
    We discuss a consistent theory for a self-interacting vector field, breaking an Abelian symmetry in such a way to obtain an interesting behavior for its longitudinal polarization. In an appropriate decoupling limit, the dynamics of the longitudinal mode is controlled by Galileon interactions. The full theory away from the decoupling limit does not propagate ghost modes, and can be investigated in regimes where non-linearities become important. When coupled to gravity, this theory provides a candidate for dark energy, since it admits de Sitter cosmological solutions characterized by a technically natural value for the Hubble parameter. We also consider the homogeneous evolution when, besides the vector, additional matter in the form of perfect fluids is included. We find that the vector can have an important role in characterizing the universe expansion
    • …
    corecore