863 research outputs found

    GCIRS 7, a pulsating M1 supergiant at the Galactic centre. Physical properties and age

    Full text link
    The stellar population in the central parsec of the Galaxy is dominated by an old (several Gyr) population, but young, massive stars dominate the luminosity function. We have studied the most luminous of these stars, GCIRS 7, in order to constrain the age of the recent star formation event in the Galactic Centre and to characterise it as an interferometric reference for observations of the Galactic Centre with the instrument GRAVITY, which will equip the Very Large Telescope Interferometer in the near future. We present the first H-band interferometric observations of GCIRS 7, obtained using the PIONIER visitor instrument on the VLTI using the four 8.2-m unit telescopes. In addition, we present unpublished K-band VLTI/AMBER data, build JHKL light-curves based on data spanning 4 decades, and measured the star's effective temperature using SINFONI spectroscopy. GCIRS 7 is marginally resolved at H-band (in 2013: uniform-disk diameter=1.076+/-0.093mas, R=960+/-92Rsun at 8.33+/-0.35kpc). We detect a significant circumstellar contribution at K-band. The star and its environment are variable in brightness and in size. The photospheric H-band variations are well modelled with two periods: P0~470+/-10 days (amplitude ~0.64mag) and long secondary period LSP~2700-2850 days (~1.1mag). As measured from CO equivalent width, =3600+/-195K. The size, periods, luminosity (=-8.44+/-0.22) and effective temperature are consistent with an M1 supergiant with an initial mass of 22.5+/-2.5Msun and an age of 6.5-10Myr (depending on rotation). This age is in remarkable agreement with most estimates for the recent star formation event in the central parsec. Caution should be taken when using this star as an interferometric reference as it is variable in size, is surrounded by a variable circumstellar environment and large convection cells may form on its photosphere.Comment: Accepted for publication in A&A. 10 pages, 12 figure

    Interference of a first-order transition with the formation of a spin-Peierls state in alpha'-NaV2O5?

    Full text link
    We present results of high-resolution thermal-expansion and specific-heat measurements on single crystalline alpha'-NaV2O5. We find clear evidence for two almost degenerate phase transitions associated with the formation of the dimerized state around 33K: A sharp first-order transition at T1=(33+-0.1)K slightly below the onset of a second-order transition at T2onset around (34+-0.1)K. The latter is accompanied by pronounced spontaneous strains. Our results are consistent with a structural transformation at T1 induced by the incipient spin-Peierls (SP) order parameter above T2=TSP.Comment: 5 pages, 7 figure

    Evolution of Quantum Criticality in CeNi_{9-x}Cu_xGe_4

    Get PDF
    Crystal structure, specific heat, thermal expansion, magnetic susceptibility and electrical resistivity studies of the heavy fermion system CeNi_{9-x}Cu_xGe_4 (0 <= x <= 1) reveal a continuous tuning of the ground state by Ni/Cu substitution from an effectively fourfold degenerate non-magnetic Kondo ground state of CeNi_9Ge_4 (with pronounced non-Fermi-liquid features) towards a magnetically ordered, effectively twofold degenerate ground state in CeNi_8CuGe_4 with T_N = 175 +- 5 mK. Quantum critical behavior, C/T ~ \chi ~ -ln(T), is observed for x about 0.4. Hitherto, CeNi_{9-x}Cu_xGe_4 represents the first system where a substitution-driven quantum phase transition is connected not only with changes of the relative strength of Kondo effect and RKKY interaction, but also with a reduction of the effective crystal field ground state degeneracy.Comment: 15 pages, 9 figure

    Planet Formation Imager (PFI): Introduction and Technical Considerations

    Get PDF
    Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the "Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newly-formed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project (www.planetformationimager.org) and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2014, Paper ID 9146-35, 10 pages, 2 Figure

    Phase fluctuations and the pseudogap in YBa2Cu3Ox

    Full text link
    The thermodynamics of the superconducting transition is studied as a function of doping using high-resolution expansivity data of YBa2Cu3Ox single crystals and Monte-Carlo simulations of the anisotropic 3D-XY model. We directly show that Tc of underdoped YBa2Cu3Ox is strongly suppressed from its mean-field value (Tc-MF) by phase fluctuations of the superconducting order parameter. For overdoped YBa2Cu3Ox fluctuation effects are greatly reduced and Tc ~ Tc-MF . We find that Tc-MF exhibits a similar doping dependence as the pseudogap energy, naturally suggesting that the pseudogap arises from phase-incoherent Cooper pairing.Comment: 9 pages, 3 Figure

    Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state

    Get PDF
    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increased. In addition, we study the cooperative effect; specifically we investigate if the barrier is smaller for a second melittin reorientation, given that another neighboring melittin was already in the transmembrane state. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect

    Direct CP-asymmetry in Inclusive Rare B-decays in 2HDM

    Get PDF
    The direct CP-asymmetry in the inclusive B→XdγB \to X_d \gamma and B→Xde+e−B \to X_d e^+ e^ - decays is investigated in the two-Higgs doublet extension of the Standard Model (2HDM). The investigation is performed in the lowest non-vanishing order of the perturbation theory using the existing restrictions on the 2HDM parameters space. It is shown that the direct CP-asymmetry in the B→XdγB \to X_d \gamma decay can deviate significantly from the Standard Model predictions. In the presence of only one source of CP-violation (the CKM matrix weak phase) aCP(B→Xdγ)a_{CP}(B \to X_d \gamma) can have the sign opposite to that in the SM. The new source of CP-violation can make ∣aCP(B→Xdγ)∣|a_{CP}(B \to X_d \gamma)| arbitrary small (unlike the SM case) and hence unmeasurable. Quantitatively, the obtained results suffer from the uncertainty of the choice of renormalization scale. As for the B→Xde+e−B \to X_d e^+ e^ - rate asymmetry, its renormalization scale dependence in the lowest non-vanishing order does not allow to conclude if this quantity is efficient for testing New Physics beyond the Standard Model.Comment: 16 pages including 2 figure

    Failure of JoAnne's Global Fit to the Wilson Coefficients in Rare B Decays: A Left-Right Model Example

    Full text link
    In the Standard Model and many of its extensions, it is well known that all of the observables associated with the rare decays b→sγb\to s\gamma and b→sℓ+ℓ−b\to s\ell^+\ell^- can be expressed in terms of the three Wilson coefficients, C7L,9L,10L(μ∼mb)C_{7L,9L,10L}(\mu \sim m_b), together with several universal kinematic functions. In particular it has been shown that the numerical values of these coefficients can be uniquely extracted by a three parameter global fit to data obtainable at future BB-factories given sufficient integrated luminosity. In this paper we examine if such global fits are also sensitive to new operators beyond those which correspond to the above coefficients, i.e., whether is it possible that new operators can be of sufficient importance for the three parameter fit to fail and for this to be experimentally observable. Using the Left-Right Symmetric Model as an example of a scenario with an extended operator basis, we demonstrate via Monte Carlo techniques that such a possibility can indeed be realized. In some sense this potential failure of the global fit approach can actually be one of its greatest successes in identifying the existence of new physics.Comment: 30 pages, 6 figure
    • …
    corecore