4,024 research outputs found

    Color separate singlets in e+ee^+e^- annihilation

    Get PDF
    We use the method of color effective Hamiltonian to study the properties of states in which a gluonic subsystem forms a color singlet, and we will study the possibility that such a subsystem hadronizes as a separate unit. A parton system can normally be subdivided into singlet subsystems in many different ways, and one problem arises from the fact that the corresponding states are not orthogonal. We show that if only contributions of order 1/Nc21/N_c^2 are included, the problem is greatly simplified. Only a very limited number of states are possible, and we present an orthogonalization procedure for these states. The result is simple and intuitive and could give an estimate of the possibility to produce color separated gluonic subsystems, if no dynamical effects are important. We also study with a simple MC the possibility that configurations which correspond to "short strings" are dynamically favored. The advantage of our approach over more elaborate models is its simplicity, which makes it easier to estimate color reconnection effects in reactions which are more complicated than the relatively simple e+ee^+e^- annihilation.Comment: Revtex, 24 pages, 7 figures; Compared to the previous version, 1 new figure is added and Monte-Carlo results are re-analyzed, as suggested by the referee; To appear in Phys. Rev.

    QCD Tests in High Energy Collisions

    Get PDF
    Recent measurements and theoretical developments on the hadronic final state in deep-inelastic scattering, pp and ee collisions are presented

    Relative CC"-Numerical Ranges for Applications in Quantum Control and Quantum Information

    Full text link
    Motivated by applications in quantum information and quantum control, a new type of CC"-numerical range, the relative CC"-numerical range denoted WK(C,A)W_K(C,A), is introduced. It arises upon replacing the unitary group U(N) in the definition of the classical CC"-numerical range by any of its compact and connected subgroups KU(N)K \subset U(N). The geometric properties of the relative CC"-numerical range are analysed in detail. Counterexamples prove its geometry is more intricate than in the classical case: e.g. WK(C,A)W_K(C,A) is neither star-shaped nor simply-connected. Yet, a well-known result on the rotational symmetry of the classical CC"-numerical range extends to WK(C,A)W_K(C,A), as shown by a new approach based on Lie theory. Furthermore, we concentrate on the subgroup SUloc(2n):=SU(2)...SU(2)SU_{\rm loc}(2^n) := SU(2)\otimes ... \otimes SU(2), i.e. the nn-fold tensor product of SU(2), which is of particular interest in applications. In this case, sufficient conditions are derived for WK(C,A)W_{K}(C,A) being a circular disc centered at origin of the complex plane. Finally, the previous results are illustrated in detail for SU(2)SU(2)SU(2) \otimes SU(2).Comment: accompanying paper to math-ph/070103

    Unit circle elliptic beta integrals

    Full text link
    We present some elliptic beta integrals with a base parameter on the unit circle, together with their basic degenerations.Comment: 15 pages; minor corrections, references updated, to appear in Ramanujan

    Search for antiproton decay at the Fermilab Antiproton Accumulator

    Full text link
    A search for antiproton decay has been made at the Fermilab Antiproton Accumulator. Limits are placed on thirteen antiproton decay modes. The results include the first explicit experimental limits on the muonic decay modes of the antiproton, and the first limits on the decay modes e- gamma gamma, and e- omega. The most stringent limit is for the decay mode pbar-> e- gamma. At 90% C.L. we find that tau/B(pbar-> e- gamma) > 7 x 10^5 yr. The most stringent limit for decay modes with a muon in the final state is for the decay pbar-> mu- gamma. At 90% C.L. we find that tau/B(pbar-> mu- gamma) > 5 x 10^4 yr.Comment: 20 pages, 8 figures. Submitted to Phys. Rev. D. Final results on 13 channels (was 15) are presente

    String Effects on Fermi--Dirac Correlation Measurements

    Get PDF
    We investigate some recent measurements of Fermi--Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e+ee^+e^--annihilation at the Z0Z^0 peak. In the hadronization models there are besides the Fermi--Dirac correlation effect also a strong dynamical (anti-)correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations which are not related to Fermi--Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model-uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to make any firm conclusion about the source radii relevant for baryon production at LEP

    Ordering variable for parton showers

    Full text link
    The parton splittings in a parton shower are ordered according to an ordering variable, for example the transverse momentum of the daughter partons relative to the direction of the mother, the virtuality of the splitting, or the angle between the daughter partons. We analyze the choice of the ordering variable and conclude that one particular choice has the advantage of factoring softer splittings from harder splittings graph by graph in a physical gauge.Comment: 28 pages, 5 figure

    Detecting Gluino-Containing Hadrons

    Get PDF
    When SUSY breaking produces only dimension-2 operators, gluino and photino masses are of order 1 GeV or less. The gluon-gluino bound state has mass 1.3-2.2 GeV and lifetime > 10^{-5} - 10^{-10} s. This range of mass and lifetime is largely unconstrained because missing energy and beam dump techniques are ineffective. With only small modifications, upcoming K^0 decay experiments can study most of the interesting range. The lightest gluino-containing baryon (uds-gluino) is long-lived or stable; experiments to find it and the uud-gluino are also discussed.Comment: 13 pp, 1 figure (uuencoded). Descendant of hep-ph/9504295, hep-ph/9508291, and hep-ph/9508292, focused on experimental search techniques. To be published in Phys Rev Let

    Phase 1 study of sirolimus in combination with oral cyclophosphamide and topotecan in children and young adults with relapsed and refractory solid tumors.

    Get PDF
    PurposeTo determine the maximum tolerated dose (MTD), toxicities, and pharmacodynamics effects of sirolimus combined with oral metronomic topotecan and cyclophosphamide in a pediatric population.Materials and methodsPatients who were 1 to 30 years of age with relapsed/refractory solid tumors (including CNS) were eligible. Patients received daily oral sirolimus and cyclophosphamide (25-50 mg/m2/dose) on days 1-21 and oral topotecan (0.8 mg/m2/dose) on days 1-14 in 28-day cycles. Sirolimus steady-state plasma trough concentrations of 3-7.9 ng/mL and 8-12.0 ng/mL were evaluated, with dose escalation based on a 3+3 phase 1 design. Biomarkers of angiogenesis were also evaluated.ResultsTwenty-one patients were treated (median age 18 years; range 9-30). Dose-limiting toxicities included myelosuppression, ALT elevation, stomatitis, and hypertriglyceridemia. The MTD was sirolimus with trough goal of 8-12.0 ng/mL; cyclophosphamide 25 mg/m2/dose; and topotecan 0.8 mg/m2/dose. No objective responses were observed. Four patients had prolonged stable disease > 4 cycles (range 4-12). Correlative biomarker analyses demonstrated reductions in thrombospondin-1 (p=0.043) and soluble vascular endothelial growth factor receptor-2 plasma concentrations at 21 days compared to baseline.ConclusionsThe combination of oral sirolimus, topotecan, and cyclophosphamide was well tolerated and biomarker studies demonstrated modulation of angiogenic pathways with this regimen

    Interleaved Parton Showers and Tuning Prospects

    Full text link
    General-purpose Monte Carlo event generators have become important tools in particle physics, allowing the simulation of exclusive hadronic final states. In this article we examine the Pythia 8 generator, in particular focusing on its parton-shower algorithms. Some relevant new additions to the code are introduced, that should allow for a better description of data. We also implement and compare with 2 to 3 real-emission QCD matrix elements, to check how well the shower algorithm fills the phase space away from the soft and collinear regions. A tuning of the generator to Tevatron data is performed for two PDF sets and the impact of first new LHC data is examined
    corecore