963 research outputs found
Test of the Equivalence Principle Using a Rotating Torsion Balance
We used a continuously rotating torsion balance instrument to measure the
acceleration difference of beryllium and titanium test bodies towards sources
at a variety of distances. Our result Delta a=(0.6+/-3.1)x10^-15 m/s^2 improves
limits on equivalence-principle violations with ranges from 1 m to infinity by
an order of magnitude. The Eoetvoes parameter is eta=(0.3+/-1.8)x10^-13. By
analyzing our data for accelerations towards the center of the Milky Way we
find equal attractions of Be and Ti towards galactic dark matter, yielding
eta=(-4 +/- 7)x10^-5. Space-fixed differential accelerations in any direction
are limited to less than 8.8x10^-15 m/s^2 with 95% confidence.Comment: 4 pages, 4 figures; accepted for publication in PR
Scaling of curvature in sub-critical gravitational collapse
We perform numerical simulations of the gravitational collapse of a
spherically symmetric scalar field. For those data that just barely do not form
black holes we find the maximum curvature at the position of the central
observer. We find a scaling relation between this maximum curvature and
distance from the critical solution. The scaling relation is analogous to that
found by Choptuik for black hole mass for those data that do collapse to form
black holes. We also find a periodic wiggle in the scaling exponent.Comment: Revtex, 2 figures, Discussion modified, to appear in Phys. Rev.
Late Time Tail of Wave Propagation on Curved Spacetime
The late time behavior of waves propagating on a general curved spacetime is
studied. The late time tail is not necessarily an inverse power of time. Our
work extends, places in context, and provides understanding for the known
results for the Schwarzschild spacetime. Analytic and numerical results are in
excellent agreement.Comment: 11 pages, WUGRAV-94-1
Comments on Black Holes in String Theory
A very brief review is given of some of the developments leading to our
current understanding of black holes in string theory. This is followed by a
discussion of two possible misconceptions in this subject - one involving the
stability of small black holes and the other involving scale radius duality.
Finally, I describe some recent results concerning quasinormal modes of black
holes in anti de Sitter spacetime, and their implications for strongly coupled
conformal field theories (in various dimensions).Comment: 13 pages. Talk given at Strings '99, Potsdam, German
Micrometer-sized Water Ice Particles for Planetary Science Experiments: Influence of Surface Structure on Collisional Properties
Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressureâtemperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above â210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from â10 to â30 Ă
(â2.5 to 12 bilayers) proves increased molecular mobility at temperatures above â210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressureâtemperature environment, may have a larger influence on collision outcomes than previously thought
Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale
We conducted three torsion-balance experiments to test the gravitational
inverse-square law at separations between 9.53 mm and 55 micrometers, probing
distances less than the dark-energy length scale m. We find with 95% confidence
that the inverse-square law holds () down to a length scale
m and that an extra dimension must have a size m.Comment: 4 pages, 6 figure
Gauge symmetry breaking on orbifolds
We discuss a new method for gauge symmetry breaking in theories with one
extra dimension compactified on the orbifold S^1/Z_2. If we assume that fields
and their derivatives can jump at the orbifold fixed points, we can implement a
generalized Scherk-Schwarz mechanism that breaks the gauge symmetry. We show
that our model with discontinuous fields is equivalent to another with
continuous but non periodic fields; in our scheme localized lagrangian terms
for bulk fields appear.Comment: 6 pages, 2 figures. Talk given at the XXXVIIth Rencontres de Moriond,
"Electroweak interactions and unified theories", Les Arcs, France, 9-16 Mar
2002. Minor changes, one reference adde
Analytical solutions for black-hole critical behaviour
Dynamical Einstein cluster is a spherical self-gravitating system of
counterrotating particles, which may expand, oscillate and collapse. This
system exhibits critical behaviour in its collapse at the threshold of black
hole formation. It appears when the specific angular momentum of particles is
tuned finely to the critical value. We find the unique exact self-similar
solution at the threshold. This solution begins with a regular surface,
involves timelike naked singularity formation and asymptotically approaches a
static self-similar cluster.Comment: 4 pages, 3 figures, accepted for publication in General Relativity
and Gravitation, typos correcte
Can Naked Singularities Yield Gamma Ray Bursts?
Gamma-ray bursts are believed to be the most luminous objects in the
Universe. There has been some suggestion that these arise from quantum
processes around naked singularities. The main problem with this suggestion is
that all known examples of naked singularities are massless and hence there is
effectively no source of energy. It is argued that a globally naked singularity
coupled with quantum processes operating within a distance of the order of
Planck length of the singularity will probably yield energy burst of the order
of M_pc^2\approx2\times 10^{16} ergs, where M_p is the Planck mass.Comment: 4 pages, TeX, no figure
Testing numerical relativity with the shifted gauge wave
Computational methods are essential to provide waveforms from coalescing
black holes, which are expected to produce strong signals for the gravitational
wave observatories being developed. Although partial simulations of the
coalescence have been reported, scientifically useful waveforms have so far not
been delivered. The goal of the AppleswithApples (AwA) Alliance is to design,
coordinate and document standardized code tests for comparing numerical
relativity codes. The first round of AwA tests have now being completed and the
results are being analyzed. These initial tests are based upon periodic
boundary conditions designed to isolate performance of the main evolution code.
Here we describe and carry out an additional test with periodic boundary
conditions which deals with an essential feature of the black hole excision
problem, namely a non-vanishing shift. The test is a shifted version of the
existing AwA gauge wave test. We show how a shift introduces an exponentially
growing instability which violates the constraints of a standard harmonic
formulation of Einstein's equations. We analyze the Cauchy problem in a
harmonic gauge and discuss particular options for suppressing instabilities in
the gauge wave tests. We implement these techniques in a finite difference
evolution algorithm and present test results. Although our application here is
limited to a model problem, the techniques should benefit the simulation of
black holes using harmonic evolution codes.Comment: Submitted to special numerical relativity issue of Classical and
Quantum Gravit
- âŠ