963 research outputs found

    Test of the Equivalence Principle Using a Rotating Torsion Balance

    Full text link
    We used a continuously rotating torsion balance instrument to measure the acceleration difference of beryllium and titanium test bodies towards sources at a variety of distances. Our result Delta a=(0.6+/-3.1)x10^-15 m/s^2 improves limits on equivalence-principle violations with ranges from 1 m to infinity by an order of magnitude. The Eoetvoes parameter is eta=(0.3+/-1.8)x10^-13. By analyzing our data for accelerations towards the center of the Milky Way we find equal attractions of Be and Ti towards galactic dark matter, yielding eta=(-4 +/- 7)x10^-5. Space-fixed differential accelerations in any direction are limited to less than 8.8x10^-15 m/s^2 with 95% confidence.Comment: 4 pages, 4 figures; accepted for publication in PR

    Scaling of curvature in sub-critical gravitational collapse

    Get PDF
    We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For those data that just barely do not form black holes we find the maximum curvature at the position of the central observer. We find a scaling relation between this maximum curvature and distance from the critical solution. The scaling relation is analogous to that found by Choptuik for black hole mass for those data that do collapse to form black holes. We also find a periodic wiggle in the scaling exponent.Comment: Revtex, 2 figures, Discussion modified, to appear in Phys. Rev.

    Late Time Tail of Wave Propagation on Curved Spacetime

    Get PDF
    The late time behavior of waves propagating on a general curved spacetime is studied. The late time tail is not necessarily an inverse power of time. Our work extends, places in context, and provides understanding for the known results for the Schwarzschild spacetime. Analytic and numerical results are in excellent agreement.Comment: 11 pages, WUGRAV-94-1

    Comments on Black Holes in String Theory

    Get PDF
    A very brief review is given of some of the developments leading to our current understanding of black holes in string theory. This is followed by a discussion of two possible misconceptions in this subject - one involving the stability of small black holes and the other involving scale radius duality. Finally, I describe some recent results concerning quasinormal modes of black holes in anti de Sitter spacetime, and their implications for strongly coupled conformal field theories (in various dimensions).Comment: 13 pages. Talk given at Strings '99, Potsdam, German

    Micrometer-sized Water Ice Particles for Planetary Science Experiments: Influence of Surface Structure on Collisional Properties

    Get PDF
    Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressure–temperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above ≈210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) proves increased molecular mobility at temperatures above ≈210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure–temperature environment, may have a larger influence on collision outcomes than previously thought

    Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale

    Get PDF
    We conducted three torsion-balance experiments to test the gravitational inverse-square law at separations between 9.53 mm and 55 micrometers, probing distances less than the dark-energy length scale λd=ℏc/ρd4≈85ÎŒ\lambda_{\rm d}=\sqrt[4]{\hbar c/\rho_{\rm d}}\approx 85 \mum. We find with 95% confidence that the inverse-square law holds (âˆŁÎ±âˆŁâ‰€1|\alpha| \leq 1) down to a length scale λ=56ÎŒ\lambda = 56 \mum and that an extra dimension must have a size R≀44ÎŒR \leq 44 \mum.Comment: 4 pages, 6 figure

    Gauge symmetry breaking on orbifolds

    Full text link
    We discuss a new method for gauge symmetry breaking in theories with one extra dimension compactified on the orbifold S^1/Z_2. If we assume that fields and their derivatives can jump at the orbifold fixed points, we can implement a generalized Scherk-Schwarz mechanism that breaks the gauge symmetry. We show that our model with discontinuous fields is equivalent to another with continuous but non periodic fields; in our scheme localized lagrangian terms for bulk fields appear.Comment: 6 pages, 2 figures. Talk given at the XXXVIIth Rencontres de Moriond, "Electroweak interactions and unified theories", Les Arcs, France, 9-16 Mar 2002. Minor changes, one reference adde

    Analytical solutions for black-hole critical behaviour

    Full text link
    Dynamical Einstein cluster is a spherical self-gravitating system of counterrotating particles, which may expand, oscillate and collapse. This system exhibits critical behaviour in its collapse at the threshold of black hole formation. It appears when the specific angular momentum of particles is tuned finely to the critical value. We find the unique exact self-similar solution at the threshold. This solution begins with a regular surface, involves timelike naked singularity formation and asymptotically approaches a static self-similar cluster.Comment: 4 pages, 3 figures, accepted for publication in General Relativity and Gravitation, typos correcte

    Can Naked Singularities Yield Gamma Ray Bursts?

    Get PDF
    Gamma-ray bursts are believed to be the most luminous objects in the Universe. There has been some suggestion that these arise from quantum processes around naked singularities. The main problem with this suggestion is that all known examples of naked singularities are massless and hence there is effectively no source of energy. It is argued that a globally naked singularity coupled with quantum processes operating within a distance of the order of Planck length of the singularity will probably yield energy burst of the order of M_pc^2\approx2\times 10^{16} ergs, where M_p is the Planck mass.Comment: 4 pages, TeX, no figure

    Testing numerical relativity with the shifted gauge wave

    Full text link
    Computational methods are essential to provide waveforms from coalescing black holes, which are expected to produce strong signals for the gravitational wave observatories being developed. Although partial simulations of the coalescence have been reported, scientifically useful waveforms have so far not been delivered. The goal of the AppleswithApples (AwA) Alliance is to design, coordinate and document standardized code tests for comparing numerical relativity codes. The first round of AwA tests have now being completed and the results are being analyzed. These initial tests are based upon periodic boundary conditions designed to isolate performance of the main evolution code. Here we describe and carry out an additional test with periodic boundary conditions which deals with an essential feature of the black hole excision problem, namely a non-vanishing shift. The test is a shifted version of the existing AwA gauge wave test. We show how a shift introduces an exponentially growing instability which violates the constraints of a standard harmonic formulation of Einstein's equations. We analyze the Cauchy problem in a harmonic gauge and discuss particular options for suppressing instabilities in the gauge wave tests. We implement these techniques in a finite difference evolution algorithm and present test results. Although our application here is limited to a model problem, the techniques should benefit the simulation of black holes using harmonic evolution codes.Comment: Submitted to special numerical relativity issue of Classical and Quantum Gravit
    • 

    corecore