Computational methods are essential to provide waveforms from coalescing
black holes, which are expected to produce strong signals for the gravitational
wave observatories being developed. Although partial simulations of the
coalescence have been reported, scientifically useful waveforms have so far not
been delivered. The goal of the AppleswithApples (AwA) Alliance is to design,
coordinate and document standardized code tests for comparing numerical
relativity codes. The first round of AwA tests have now being completed and the
results are being analyzed. These initial tests are based upon periodic
boundary conditions designed to isolate performance of the main evolution code.
Here we describe and carry out an additional test with periodic boundary
conditions which deals with an essential feature of the black hole excision
problem, namely a non-vanishing shift. The test is a shifted version of the
existing AwA gauge wave test. We show how a shift introduces an exponentially
growing instability which violates the constraints of a standard harmonic
formulation of Einstein's equations. We analyze the Cauchy problem in a
harmonic gauge and discuss particular options for suppressing instabilities in
the gauge wave tests. We implement these techniques in a finite difference
evolution algorithm and present test results. Although our application here is
limited to a model problem, the techniques should benefit the simulation of
black holes using harmonic evolution codes.Comment: Submitted to special numerical relativity issue of Classical and
Quantum Gravit