5,582 research outputs found

    Poisson to Random Matrix Transition in the QCD Dirac Spectrum

    Full text link
    At zero temperature the lowest part of the spectrum of the QCD Dirac operator is known to consist of delocalized modes that are described by random matrix statistics. In the present paper we show that the nature of these eigenmodes changes drastically when the system is driven through the finite temperature cross-over. The lowest Dirac modes that are delocalized at low temperature become localized on the scale of the inverse temperature. At the same time the spectral statistics changes from random matrix to Poisson statistics. We demonstrate this with lattice QCD simulations using 2+1 flavors of light dynamical quarks with physical masses. Drawing an analogy with Anderson transitions we also examine the mobility edge separating localized and delocalized modes in the spectrum. We show that it scales in the continuum limit and increases sharply with the temperature.Comment: 10 pages, 9 eps figures, a few references added and typos correcte

    The Metallicity Dependence of the Fourier Components of RR Lyrae Light Curves is the Oosterhoff/Arp/Preston Period Ratio Effect in Disguise

    Full text link
    The correlation of particular Fourier components of the light curves of RR Lyrae variables with metallicity, discovered by Simon and later by Kovacs and his coworkers, is shown to have the same explanation as the period ratios (period shifts in log P) between RRab Lyrae variables that have the same colors, amplitudes, and light-curve shapes but different metallicities. A purpose of this paper is to demonstrate that the model which predicts the period-metallicity relations is the mediating parameters of colors, amplitudes, and light-curve shapes also explains the Simon/Kovacs et al. correlation between period, Phi_31, and metallicity. The proof is made by demonstrating that the combination of the first and third phase terms in a Fourier decomposition of RRab light curves, called Phi_31 by Simon and Lee, varies monotonically across the RR Lyrae instability strip in the same way that amplitude, color, and rise time vary with period within the strip. The premise of the model is that if horizontal branches at the RR Lyrae strip are stacked in luminosity according to the metallicity, then there necessarily must be a log period shift between RR Lyraes with different metallicities at the same Phi_31 values. However, there are exceptions to the model. (...)Comment: 17 pages, 8 figures, 1 table. Accepted for publication in The A

    Development of a novel color inhomogeneity test method for injection molded parts

    Get PDF
    Abstract Nowadays most research and development concerning injection molded products are focused on their mechanical properties although visual appeal plays an even more important role on the market. There are several standards and recommendations for the testing of mechanical properties, but appearance cannot be quantified easily. The visual aspects are almost completely neglected, and there is not a commonly accepted method for measuring color inhomogeneity. The appearance and color homogeneity of injection molded parts depends on the coloring method itself, the applied technology and several other conditions. The method used nowadays to evaluate color inhomogeneity is based on visual inspection by humans. This research focuses on developing a new and automated method that can replace visual inspection. The functionality and precision of the new method and software have been tested and compared with visual inspection to prove its applicability

    A multi-color and Fourier study of RR Lyrae variables in the globular cluster NGC 5272 (M3)

    Get PDF
    We have performed a detailed study of the pulsational and evolutionary characteristics of 133 RR Lyrae stars in the globular cluster NGC5272 (M3) using highly accurate BVI data taken on 5 separate epochs. M3 seems to contain no less than ~32% of Blazhko stars, and the occurrence and characteristics of the Blazhko effect have been analyzed in detail. We have identified a good number (~ 14%) of overluminous RR Lyrae stars that are likely in a more advanced evolutionary stage off the Zero Age Horizontal Branch (ZAHB). Physical parameters (i.e. temperature, luminosity, mass) have been derived from (B--V) colors and accurate color-temperature calibration, and compared with Horizontal Branch evolutionary models and with the requirements of stellar pulsation theory. Additional analysis by means of Fourier decomposition of the V light curves confirms, as expected, that no metallicity spread is present in M3. Evolution off the ZAHB does not affect [Fe/H] determinations, whereas Blazhko stars at low amplitude phase do affect [Fe/H] distributions as they appear more metal-rich. Absolute magnitudes derived from Fourier coefficients might provide useful average estimates for groups of stars, if applicable, but do not give reliable {\em individual} values. Intrinsic colors derived from Fourier coefficients show significant discrepancies with the observed ones, hence the resulting temperatures and temperature-related parameters are unreliable.Comment: 86 pages, 19 figures, 13 tables, in press A

    The MACHO Project LMC Variable Star Inventory. IX. Frequency Analysis of the First Overtone RR Lyrae Stars and the Indication for Nonradial Pulsations

    Full text link
    More than 1300 variables classified provisionally as first overtone RR Lyrae pulsators in the MACHO variable star database of the Large Magellanic Cloud (LMC) have been subjected to standard frequency analysis. Based on the remnant power in the prewhitened spectra, we found 70% of the total population to be monoperiodic. The remaining 30% (411 stars) are classified as one of 9 types according to their frequency spectra. Several types of RR Lyrae pulsational behavior are clearly identified here for the first time. Together with the earlier discovered double-mode (fundamental & first overtone) variables this study increased the number of the known double-mode stars in the LMC to 181. During the total 6.5yr time span of the data, 10% of the stars show strong period changes. We also discovered two additional types of multifrequency pulsators with low occurrence rates of 2% for each. In the first type there remains one closely spaced component after prewhitening by the main pulsation frequency. In the second type the number of remnant components is two, they are also closely spaced, and, in addition, they are symmetric in their frequency spacing relative to the central component. This latter type of variables is associated with their relatives among the fundamental pulsators, known as Blazhko variables. Their high frequency (~20%) among the fundamental mode variables versus the low occurrence rate of their first overtone counterparts makes it more difficult to explain Blazhko phenomenon by any theory depending mainly on the role of aspect angle or magnetic field. Current theoretical models invoke nonradial pulsation components in these stars.Comment: 20 pages, 21 figures (bitmapped), 7 tables, to appear in Ap.

    Non equilibrium inertial dynamics of colloidal systems

    Full text link
    We consider the properties of a one dimensional fluid of brownian inertial hard-core particles, whose microscopic dynamics is partially damped by a heat-bath. Direct interactions among the particles are represented as binary, instantaneous elastic collisions. Collisions with the heath bath are accounted for by a Fokker-Planck collision operator, whereas direct collisions among the particles are treated by a well known method of kinetic theory, the Revised Enskog Theory. By means of a time multiple time-scale method we derive the evolution equation for the average density. Remarkably, for large values of the friction parameter and/or of the mass of the particles we obtain the same equation as the one derived within the dynamic density functional theory (DDF). In addition, at moderate values of the friction constant, the present method allows to study the inertial effects not accounted for by DDF method. Finally, a numerical test of these corrections is provided.Comment: 13 pages+ 3 Postscript figure

    Towards a Deadline-Based Simulation Experimentation Framework Using Micro-Services Auto-Scaling Approach

    Get PDF
    There is growing number of research efforts in developing auto-scaling algorithms and tools for cloud resources. Traditional performance metrics such as CPU, memory and bandwidth usage for scaling up or down resources are not sufficient for all applications. For example, modeling and simulation experimentation is usually expected to yield results within a specific timeframe. In order to achieve this, often the quality of experiments is compromised either by restricting the parameter space to be explored or by limiting the number of replications required to give statistical confidence. In this paper, we present early stages of a deadline-based simulation experimentation framework using a micro-services auto-scaling approach. A case study of an agent-based simulation of a population physical activity behavior is used to demonstrate our framework

    SZTAKI desktop grid: a modular and scalable way of building large computing grids

    Get PDF
    So far BOINC based desktop grid systems have been applied at the global computing level. This paper describes an extended version of BOINC called SZTAKI desktop grid (SZDG) that aims at using desktop grids (DGs) at local (enterprise/institution) level. The novelty of SZDG is that it enables the hierarchical organisation of local DGs, i.e., clients of a DG can be DGs at a lower level that can take work units from their higher level DG server. More than that, even clusters can be connected at the client level and hence work units can contain complete MPI programs to be run on the client clusters. In order to easily create master/worker type DG applications a new API, called as the DC-API has been developed. SZDG and DC-API has been successfully applied both at the global and local level, both in academic institutions and in companies to solve problems requiring large computing power

    From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems

    Full text link
    At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of (often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems (also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commercial workflow products cannot support the highly dynamic activities found both in the design stages of product development and in rapidly evolving workflow definitions. The integration of Product Data Management with Workflow Management can provide support for product development from initial CAD/CAM collaborative design through to the support and optimisation of production workflow activities. This paper investigates this integration and proposes a philosophy for the support of product data throughout the full development and production lifecycle and demonstrates its usefulness in the construction of CMS detectors.Comment: 18 pages, 13 figure
    • …
    corecore