25 research outputs found

    Adiponectin affects the mechanical responses in strips from the mouse gastric fundus

    Get PDF
    AIMTo investigate whether the adipocytes derived hormone adiponectin (ADPN) affects the mechanical responses in strips from the mouse gastric fundus.METHODSFor functional experiments, gastric strips from the fundal region were cut in the direction of the longitudinal muscle layer and placed in organ baths containing Krebs-Henseleit solution. Mechanical responses were recorded via force-displacement transducers, which were coupled to a polygraph for continuous recording of isometric tension. Electrical field stimulation (EFS) was applied via two platinum wire rings through which the preparation was threaded. The effects of ADPN were investigated on the neurally-induced contractile and relaxant responses elicited by EFS. The expression of ADPN receptors, Adipo-R1 and Adipo-R2, was also evaluated by touchdown-PCR analysis.RESULTSIn the functional experiments, EFS (4-16 Hz) elicited tetrodotoxin (TTX)-sensitive contractile responses. Addition of ADPN to the bath medium caused a reduction in amplitude of the neurally-induced contractile responses (P < 0.05). The effects of ADPN were no longer observed in the presence of the nitric oxide (NO) synthesis inhibitor L-N-G-nitro arginine (L-NNA) (P > 0.05). The direct smooth muscle response to methacholine was not influenced by ADPN (P > 0.05). In carbachol precontracted strips and in the presence of guanethidine, EFS induced relaxant responses. Addition of ADPN to the bath medium, other than causing a slight and progressive decay of the basal tension, increased the amplitude of the neurally-induced relaxant responses (P < 0.05). Touchdown-PCR analysis revealed the expression of both Adipo-R1 and Adipo-R2 in the gastric fundus.CONCLUSIONThe results indicate for the first time that ADPN is able to influence the mechanical responses in strips from the mouse gastric fundus

    Emergence of fox rabies in north-eastern Italy.

    Get PDF
    Italy has been classified as rabies-free since 1997. In October 2008, two foxes have been diagnosed with rabies in the Province of Udine, north-east Italy. One case of human exposure caused by a bite from one of the foxes has occurred and was properly treated

    Despite lost contractility, a sub-population of rat muscle fibers maintains an assessable excitation-contraction coupling mechanism after long-standing denervation

    Get PDF
    J Neuropathol Exp Neurol. 2009 Dec;68(12):1256-68. A subpopulation of rat muscle fibers maintains an assessable excitation-contraction coupling mechanism after long-standing denervation despite lost contractility. Squecco R, Carraro U, Kern H, Pond A, Adami N, Biral D, Vindigni V, Boncompagni S, Pietrangelo T, Bosco G, Fanò G, Marini M, Abruzzo PM, Germinario E, Danieli-Betto D, Protasi F, Francini F, Zampieri S. Source Interuniversitary Institute of Myology, Chieti, Italy. Abstract To define the time course and potential effects of electrical stimulation on permanently denervated muscle, we evaluated excitation-contraction coupling (ECC) of rat leg muscles during progression to long-term denervation by ultrastructural analysis, specific binding to dihydropyridine receptors, ryanodine receptor 1 (RYR-1), Ca channels and extrusion Ca pumps, gene transcription and translation of Ca-handling proteins, and in vitro mechanical properties and electrophysiological analyses of sarcolemmal passive properties and L-type Ca current (ICa) parameters. We found that in response to long-term denervation: 1) isolated muscle that is unable to twitch in vitro by electrical stimulation has very small myofibers but may show a slow caffeine contracture; 2) only roughly half of the muscle fibers with "voltage-dependent Ca channel activity" are able to contract; 3) the ECC mechanisms are still present and, in part, functional; 4)ECC-related gene expression is upregulated; and 5) at any time point, there are muscle fibers that are more resistant than others to denervation atrophy and disorganization of the ECC apparatus. These results support the hypothesis that prolonged "resting" [Ca] may drive progression of muscle atrophy to degeneration and that electrical stimulation-induced [Ca] modulation may mimic the lost nerve influence, playing a key role in modifying the gene expression of denervated muscle. Hence, these data provide a potential molecular explanation for the muscle recovery that occurs in response to rehabilitation strategies developed based on empirical clinical observations. PMID: 19915489 [PubMed - indexed for MEDLINE

    Biophysical mechanisms of single-cell interactions with microtopographical cues

    Get PDF
    Biophysical cues encoded in the extracellular matrix (ECM) are increasingly being explored to control cell behavior in tissue engineering applications. Recently, we showed that cell adhesion to microtopographical structures (“micropegs”) can suppress proliferation in a manner that may be blunted by inhibiting cellular contractility, suggesting that this effect is related to altered cell-scaffold mechanotransduction. We now directly investigate this possibility at the microscale through a combination of live-cell imaging, single-cell mechanics methods, and analysis of gene expression. Using time-lapse imaging, we show that when cells break adhesive contacts with micropegs, they form F-actin-filled tethers that extend and then rupture at a maximum, critical length that is greater than trailing-edge tethers observed on topographically flat substrates. This critical tether length depends on myosin activation, with inhibition of Rho-associated kinase abolishing topography-dependent differences in tether length. Using cellular de-adhesion and atomic force microscopy indentation measurements, we show that the micropegs enhance cell-scaffold adhesive interactions without changing whole-cell elasticity. Moreover, micropeg adhesion increases expression of specific mechanotransductive genes, including RhoA GTPase and myosin heavy chain II, and, in myoblasts, the functional marker connexin 43. Together, our data support a model in which microtopographical cues alter the local mechanical microenvironment of cells by modulating adhesion and adhesion-dependent mechanotransductive signaling

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF

    Adiponectin affects the mechanical responses in strips from the mouse gastric fundus

    No full text
    AIM: To investigate whether the adipocytes derived hormone adiponectin (ADPN) affects the mechanical responses in strips from the mouse gastric fundus. METHODS: For functional experiments, gastric strips from the fundal region were cut in the direction of the longitudinal muscle layer and placed in organ baths containing Krebs-Henseleit solution. Mechanical responses were recordedvia force-displacement transducers, which were coupled to a polygraph for continuous recording of isometric tension. Electrical field stimulation (EFS) was applied via two platinum wire rings through which the preparation was threaded. The effects of ADPN were investigated on the neurally-induced contractile and relaxant responses elicited by EFS. The expression of ADPN receptors, Adipo-R1 and Adipo-R2, was also evaluated by touchdown-PCR analysis. RESULTS: In the functional experiments, EFS (4-16 Hz) elicited tetrodotoxin (TTX)-sensitive contractile responses. Addition of ADPN to the bath medium caused a reduction in amplitude of the neurally-induced contractile responses (P 0.05). The direct smooth muscle response to methacholine was not influenced by ADPN (P > 0.05). In carbachol precontracted strips and in the presence of guanethidine, EFS induced relaxant responses. Addition of ADPN to the bath medium, other than causing a slight and progressive decay of the basal tension, increased the amplitude of the neurally-induced relaxant responses (P < 0.05). Touchdown-PCR analysis revealed the expression of both Adipo-R1 and Adipo-R2 in the gastric fundus. CONCLUSION: The results indicate for the first time that ADPN is able to influence the mechanical responses in strips from the mouse gastric fundus
    corecore