375 research outputs found

    Several examples of neigbourly polyhedra in co-dimension 4

    Full text link
    In the article, a series of neigbourly polyhedra is constructed. They have N=2d+4N=2d+4 vertices and are embedded in R2d\mathbb R^{2d}. Their (affine) Gale diagrams in R2\mathbb R^2 have d+3d+3 black points that form a convex polygon. These Gale diagams can be enumerated using 3-trees (trees with some additional structure). Given dd and mm, each of the constructed polyhedra in R2d\mathbb R^{2d} has a fixed number of faces of dimension mm that contain a vertex AA. (This number depends on dd and mm does not depend on the polyhedron and the vertex AA).Comment: In russian, 25 pages, 16 figure

    Overcoming Redundancy: An RNAi Enhancer Screen for Morphogenesis Genes in Caenorhabditis elegans

    Get PDF
    Morphogenesis is an important component of animal development. Genetic redundancy has been proposed to be common among morphogenesis genes, posing a challenge to the genetic dissection of morphogenesis mechanisms. Genetic redundancy is more generally a challenge in biology, as large proportions of the genes in diverse organisms have no apparent loss of function phenotypes. Here, we present a screen designed to uncover redundant and partially redundant genes that function in an example of morphogenesis, gastrulation in Caenorhabditis elegans. We performed an RNA interference (RNAi) enhancer screen in a gastrulation-sensitized double-mutant background, targeting genes likely to be expressed in gastrulating cells or their neighbors. Secondary screening identified 16 new genes whose functions contribute to normal gastrulation in a nonsensitized background. We observed that for most new genes found, the closest known homologs were multiple other C. elegans genes, suggesting that some may have derived from rounds of recent gene duplication events. We predict that such genes are more likely than single copy genes to comprise redundant or partially redundant gene families. We explored this prediction for one gene that we identified and confirmed that this gene and five close relatives, which encode predicted substrate recognition subunits (SRSs) for a CUL-2 ubiquitin ligase, do indeed function partially redundantly with each other in gastrulation. Our results implicate new genes in C. elegans gastrulation, and they show that an RNAi-based enhancer screen in C. elegans can be used as an efficient means to identify important but redundant or partially redundant developmental genes

    Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing

    Get PDF
    : The Oxford Nanopore (ONT) platform provides portable and rapid genome sequencing, and its ability to natively profile DNA methylation without complex sample processing is attractive for point-of-care real-time sequencing. We recently demonstrated ONT shallow whole-genome sequencing to detect copy number alterations (CNAs) from the circulating tumor DNA (ctDNA) of cancer patients. Here, we show that cell type and cancer-specific methylation changes can also be detected, as well as cancer-associated fragmentation signatures. This feasibility study suggests that ONT shallow WGS could be a powerful tool for liquid biopsy

    Electromigration-Induced Propagation of Nonlinear Surface Waves

    Full text link
    Due to the effects of surface electromigration, waves can propagate over the free surface of a current-carrying metallic or semiconducting film of thickness h_0. In this paper, waves of finite amplitude, and slow modulations of these waves, are studied. Periodic wave trains of finite amplitude are found, as well as their dispersion relation. If the film material is isotropic, a wave train with wavelength lambda is unstable if lambda/h_0 < 3.9027..., and is otherwise marginally stable. The equation of motion for slow modulations of a finite amplitude, periodic wave train is shown to be the nonlinear Schrodinger equation. As a result, envelope solitons can travel over the film's surface.Comment: 13 pages, 2 figures. To appear in Phys. Rev.

    Molecular and Cellular Profiling of Scalp Psoriasis Reveals Differences and Similarities Compared to Skin Psoriasis

    Get PDF
    Scalp psoriasis shows a variable clinical spectrum and in many cases poses a great therapeutic challenge. However, it remains unknown whether the immune response of scalp psoriasis differs from understood pathomechanisms of psoriasis in other skin areas. We sought to determine the cellular and molecular phenotype of scalp psoriasis by performing a comparative analysis of scalp and skin using lesional and nonlesional samples from 20 Caucasian subjects with untreated moderate to severe psoriasis and significant scalp involvement and 10 control subjects without psoriasis. Our results suggest that even in the scalp, psoriasis is a disease of the inter-follicular skin. The immune mechanisms that mediate scalp psoriasis were found to be similar to those involved in skin psoriasis. However, the magnitude of dysregulation, number of differentially expressed genes, and enrichment of the psoriatic genomic fingerprint were more prominent in skin lesions. Furthermore, the scalp transcriptome showed increased modulation of several gene-sets, particularly those induced by interferon-gamma, compared with that of skin psoriasis, which was mainly associated with activation of TNFα/L-17/IL-22-induced keratinocyte response genes. We also detected differences in expression of gene-sets involving negative regulation, epigenetic regulation, epidermal differentiation, and dendritic cell or Th1/Th17/Th22-related T-cell processes

    DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    Full text link
    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2 nm into nanoscale helices. The helical structures assemble in solution in a massively parallel fashion and with near quantitative yields. As a designed optical response, we generated giant circular dichroism and optical rotary dispersion in the visible range that originates from the collective plasmon-plasmon interactions within the nanohelices. We also show that the optical response can be tuned through the visible spectrum by changing the composition of the metal nanoparticles. The observed effects are independent of the direction of the incident light and can be switched by design between left- and right-handed orientation. Our work demonstrates the production of complex bulk materials from precisely designed nanoscopic assemblies and highlights the potential of DNA self-assembly for the fabrication of plasmonic nanostructures.Comment: 5 pages, 4 figure

    Hepatitis C virus infection among transmission-prone medical personnel

    Get PDF
    Hepatitis C virus (HCV)-infected physicians have been reported to infect some of their patients during exposure-prone procedures (EPPs). There is no European consensus on the policy for the prevention of this transmission. To help define an appropriate preventive policy, we determined the prevalence of HCV infection among EPP-performing medical personnel in the Academic Medical Center in Amsterdam, the Netherlands. The prevalence of HCV infection was studied among 729 EPP-performing health care workers. Serum samples, stored after post-hepatitis B virus (HBV) vaccination testing in the years 2000–2009, were tested for HCV antibodies. Repeat reactive samples were confirmed by immunoblot assay and the detection of HCV RNA. The average age of the 729 health care workers was 39 years (range 18–66), suggesting a considerable cumulative occupational exposure to the blood. Nevertheless, only one of the 729 workers (0.14%; 95% confidence interval [CI]: <0.01% to 0.85%) was tested and confirmed to be positive for anti-HCV and positive for HCV RNA, which is comparable to the prevalence of HCV among Amsterdam citizens. Against this background, for the protection of personnel and patients, careful follow-up after needlestick injuries may be sufficient. If a zero-risk approach is desirable and costs are less relevant, the recurrent screening of EPP-performing personnel for HCV is superior to the follow-up of reported occupational exposures

    Preliminary Report: Missense mutations in the APOL gene family are associated with end stage kidney disease risk previously attributed to the MYH9 gene

    Get PDF
    MYH9 has been proposed as a major genetic risk locus for a spectrum of non-diabetic end stage kidney disease (ESKD). We use recently released sequences from the 1000 Genomes Project to identify two western African specific missense mutations (S342G and I384M) in the neighbouring APOL1 gene, and demonstrate that these are more strongly associated with ESKD than previously reported MYH9 variants. We also show that the distribution of these risk variants in African populations is consistent with the pattern of African ancestry ESKD risk previously attributed to the MYH9 gene. Additional associations were also found among other members of the APOL gene family, and we propose that ESKD risk is caused by western African variants in members of the APOL gene family, which evolved to confer protection against pathogens, such as Trypanosoma.Comment: 25 pages, 6 figure
    corecore