24 research outputs found

    A Detailed Study of Rainbow Trout (Onchorhynchus mykiss) Intestine Revealed That Digestive and Absorptive Functions Are Not Linearly Distributed along Its Length

    Get PDF
    To increase the sustainability of trout farming,the industry requires alternatives to \ufb01sh-based meals that do not compromise animal health and growth performances. To develop new feeds, detailed knowledge of intestinal morphology and physiology is required. We performed histological, histochemical, immunohistochemical and morphometric analysis at typical time points of in vivo feeding trials (50, 150 and 500 g). Only minor changes occurred during growth whereas di\ufb00erences characterized two compartments, not linearly distributed along the intestine. The \ufb01rst included the pyloric caeca, the basal part of the complex folds and the villi of the distal intestine. This was characterized by a signi\ufb01cantly smaller number of goblet cells with smaller mucus vacuoles, higher proliferation and higher apoptotic rate but a smaller extension of fully di\ufb00erentiated epithelial cells and by the presence of numerous pinocytotic vacuolization. The second compartment was formed by the proximal intestine and the apical part of the posterior intestine complex folds. Here we observed more abundant goblet cells with bigger vacuoles, low proliferation rate, few round apoptotic cells, a more extended area of fully di\ufb00erentiated cells and no pinocytotic vacuoles. Our results suggest that rainbow trout intestine is physiologically arranged to mingle digestive and absorptive functions along its lengt

    Experimental and numerical analysis of a liquid aluminium injector for an Al-H2O based hydrogen production system

    Get PDF
    This paper investigates pressurised injection system for liquid aluminium for a cogeneration system based on the Al–H2O reaction. The reaction produces hydrogen and heat which is used for super-heating vapour for a steam cycle. The aluminium combustion with water generates also alumina as a byproduct; the aluminium oxide can be recycled and transformed back to aluminium. Thus, aluminium can be exploited as energy carrier in order to transport energy from the alumina recycling plant to the place where the cogeneration system is located. The water is also used in a closed loop; indeed, the amount of water produced employing the hydrogen obtained by the proposed system corresponds to the oxidizing water for the Al/H2O reaction. The development of a specific test rig designed for investigating the liquid aluminium injection is presented in this research study. The injector nozzle is investigated by means of numerical thermal and structural analysis. The calculations are compared and validated against the experimental measurements carried out on ad-hoc developed test rig. A good agreement between the numerical results and the experimental values is found and the new design of the nozzle is devised

    Design of a Dielectric Elastomer Cylindrical Actuator With Quasi-Constant Available Thrust: Modeling Procedure and Experimental Validation

    No full text
    A novel design for a dielectric elastomer (DE) actuator is presented. The actuator is obtained by coupling a cylindrical DE film with a series of slender beams axially loaded beyond their buckling limit. Similar to previous published solutions, where different actuator geometries were coupled with compliant mechanisms of various topologies, the elastic beams are designed so as to provide a suitable compensating force that allows obtaining a quasi-constant available thrust along the entire actuator stroke. Whilst the elastic beam are sized on the basis of an analytical procedure, the overall system performance is evaluated by means of multiphysics finite element (FE) analysis, accounting for the large deflection of the buckled-beam springs (BBSs) and for the DE material hyperelasticity. Numerical and experimental results are finally provided, which demonstrate the prediction capabilities of the proposed modeling method and confirm that well behaved cylindrical actuators can be conceived and produced

    DESIGN AND MODELING OF A DIELECTRIC ELASTOMER CYLINDRICAL ACTUATOR WITH QUASI-CONSTANT AVAILABLE THRUST

    No full text
    A novel design for a Dielectric Elastomer (DE) actuator is presented. The actuator is obtained by coupling a cylindrical DE film with a series of slender beams axially loaded beyond their buckling limit. Similarly to previous published solutions, where different actuator geometries were coupled with compliant mechanisms of various topologies, the elastic beams are designed so as to provide a suitable compensating force that allows obtaining a quasi-constant available thrust along the entire actuator stroke. The overall system performance are subsequently evaluated by means finite element analysis, accounting for the large deflection of the buckled-beam springs and for the DE material hyperelasticity. Final results confirm that compact and better behaved constant force cylindrical actuators can be obtained, which potentially outperform similar devices in terms of achievable stroke
    corecore