21 research outputs found

    Blood Lead Secular Trend in a Cohort of Children in Mexico City (1987–2002)

    Get PDF
    We determined the secular trend in blood lead levels in a cohort of 321 children born in Mexico City between 1987 and 1992. Blood lead level was measured every 6 months during a 10-year period. We modeled the effect of yearly air lead concentration nested within the calendar year in which the child was born, family use of lead-glazed pottery, socioeconomic status, year in which the child was born, age of the child at the time of blood lead measurement, place of residence, and an indicator variable for subjects with complete or incomplete blood lead values. The yearly mean of air lead of the Valley of Mexico decreased from its highest level of 2.80 μg/m(3) in 1987 to 0.07 μg/m(3) in 2002. The contribution of air lead to blood lead according to year of birth was strongest for subjects born in 1987 and fell to nearly zero for children born in 1992. The geometric mean of the entire cohort rose from 8.4 μg/dL in the first year of life to 10.1 μg/dL in the second and decreased thereafter until it reached 6.4 μg/dL at 10 years of age. Children of families who used lead-glazed ceramics had blood lead levels 18.5% higher than did children of nonusing families. Children who belonged to the lowest socioeconomic levels had blood lead levels 32.2% higher than did those of highest socioeconomic levels. Children who lived in the northeast part of the city had blood lead levels 10.9% higher compared with those who lived in the southwest

    Identifying critical windows of prenatal particulate matter (PM2.5) exposure and early childhood blood pressure

    No full text
    Background: Exposure to air pollution is associated with increased blood pressure (BP) in adults and children. Some evidence suggests that air pollution exposure during the prenatal period may contribute to adverse cardiorenal health later in life. Here we apply a distributed lag model (DLM) approach to identify critical windows that may underlie the association between prenatal particulate matter ≤ 2.5 μm in diameter (PM2.5) exposure and children's BP at ages 4–6 years. Methods: Participants included 537 mother-child dyads enrolled in the Programming Research in Obesity, GRowth Environment, and Social Stress (PROGRESS) longitudinal birth cohort study based in Mexico City. Prenatal daily PM2.5 exposure was estimated using a validated satellite-based spatio-temporal model and BP was measured using the automated Spacelabs system with a sized cuff. We used distributed lag models (DLMs) to examine associations between daily PM2.5 exposure and systolic and diastolic BP (SBP and DBP), adjusting for child's age, sex and BMI, as well as maternal education, preeclampsia and indoor smoking report during the second and third trimester, seasonality and average postnatal year 1 PM2.5 exposure. Results: We found that PM2.5 exposure between weeks 11–32 of gestation (days 80–226) was significantly associated with children's increased SBP. Similarly, PM2.5 exposure between weeks 9–25 of gestation (days 63–176) was significantly associated with increased DBP. To place this into context, a constant 10 μg/m3 increase in PM2.5 sustained throughout this critical window would predict a cumulative increase of 2.6 mmHg (CI: 0.5, 4.6) in SBP and 0.88 mmHg (CI: 0.1, 1.6) in DBP at ages 4–6 years. In a stratified analysis by sex, this association persisted in boys but not in girls. Conclusions: Second and third trimester PM2.5 exposure may increase children's BP in early life. Further work investigating PM2.5 exposure with BP trajectories later in childhood will be important to understanding cardiorenal trajectories that may predict adult disease. Our results underscore the importance of reducing air pollution exposure among susceptible populations, including pregnant women
    corecore