598 research outputs found

    Ring polymers in melts and solutions: scaling and crossover

    Full text link
    We propose a simple mean-field theory for the structure of ring polymer melts. By combining the notion of topological volume fraction and a classical van der Waals theory of fluids, we take into account many body effects of topological origin in dense systems. We predict that although the compact statistics with the Flory exponent ν=1/3\nu=1/3 is realized for very long chains, most practical cases fall into the crossover regime with the apparent exponent ν=2/5\nu = 2/5 during which the system evolves toward a topological dense-packed limit.Comment: 4 pages, 3 figure

    Transient-linking activity enhances subnuclear dynamics by affecting chromatin remodeling

    Full text link
    Spatiotemporal coordination of chromatin and subnuclear compartments is crucial for cells. A plethora of enzymes act inside nucleus, and some of those transiently link two chromatin segments. Here, we theoretically study how such transient-linking activities affect fluctuating dynamics of an inclusion in the chromatic medium. Numerical simulations and a coarse-grained model analysis categorize inclusion dynamics into three distinct modes. The transient-linking activity speeds up the inclusion dynamics by affecting a slow mode associated with chromatin remodeling, viz., size and shape of the chromatin meshes

    Semiflexible polymer conformation, distribution and migration in microcapillary flows

    Full text link
    The flow behavior of a semiflexible polymer in microchannels is studied using Multiparticle Collision Dynamics (MPC), a particle-based hydrodynamic simulation technique. Conformations, distributions, and radial cross-streamline migration are investigated for various bending rigidities, with persistence lengths Lp in the range 0.5 < Lp/Lr < 30. The flow behavior is governed by the competition between a hydrodynamic lift force and steric wall-repulsion, which lead to migration away from the wall, and a locally varying flow-induced orientation, which drives polymer away from the channel center and towards the wall. The different dependencies of these effects on the polymer bending rigidity and the flow velocity results in a complex dynamical behavior. However, a generic effect is the appearance of a maximum in the monomer and the center-of-mass distributions, which occurs in the channel center for small flow velocities, but moves off-center at higher velocities.Comment: in press at J. Phys. Condens. Matte

    Photon generation by laser-Compton scattering at the KEK-ATF

    Full text link
    We performed a photon generation experiment by laser-Compton scattering at the KEK-ATF, aiming to develop a Compton based polarized positron source for linear colliders. In the experiment, laser pulses with a 357 MHz repetition rate were accumulated and their power was enhanced by up to 250 times in the Fabry-Perot optical resonant cavity. We succeeded in synchronizing the laser pulses and colliding them with the 1.3 GeV electron beam in the ATF ring while maintaining the laser pulse accumulation in the cavity. As a result, we observed 26.0 +/- 0.1 photons per electron-laser pulse crossing, which corresponds to a yield of 10^8 photons in a second.Comment: 3 pages, 5 figures, Preprint submitted to TIPP09 Proceedings in NIM

    Dragging a polymer chain into a nanotube and subsequent release

    Full text link
    We present a scaling theory and Monte Carlo (MC) simulation results for a flexible polymer chain slowly dragged by one end into a nanotube. We also describe the situation when the completely confined chain is released and gradually leaves the tube. MC simulations were performed for a self-avoiding lattice model with a biased chain growth algorithm, the pruned-enriched Rosenbluth method. The nanotube is a long channel opened at one end and its diameter DD is much smaller than the size of the polymer coil in solution. We analyze the following characteristics as functions of the chain end position xx inside the tube: the free energy of confinement, the average end-to-end distance, the average number of imprisoned monomers, and the average stretching of the confined part of the chain for various values of DD and for the number of monomers in the chain, NN. We show that when the chain end is dragged by a certain critical distance x∗x^* into the tube, the polymer undergoes a first-order phase transition whereby the remaining free tail is abruptly sucked into the tube. This is accompanied by jumps in the average size, the number of imprisoned segments, and in the average stretching parameter. The critical distance scales as x∗∼ND1−1/νx^*\sim ND^{1-1/\nu}. The transition takes place when approximately 3/4 of the chain units are dragged into the tube. The theory presented is based on constructing the Landau free energy as a function of an order parameter that provides a complete description of equilibrium and metastable states. We argue that if the trapped chain is released with all monomers allowed to fluctuate, the reverse process in which the chain leaves the confinement occurs smoothly without any jumps. Finally, we apply the theory to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure

    Dynamics of Excited Electrons in Copper: Role of Auger Electrons

    Full text link
    Within a theoretical model based on the Boltzmann equation, we analyze in detail the structure of the unusual peak recently observed in the relaxation time in Cu. In particular, we discuss the role of Auger electrons in the electron dynamics and its dependence on the d-hole lifetime, the optical transition matrix elements and the laser pulse duration. We find that the Auger contribution to the distribution is very sensitive to both the d-hole lifetime tau_h and the laser pulse duration tau_l and can be expressed as a monotonic function of tau_l/tau_h. We have found that for a given tau_h, the Auger contribution is significantly smaller for a short pulse duration than for a longer one. We show that the relaxation time at the peak depends linearly on the d-hole lifetime, but interestingly not on the amount of Auger electrons generated. We provide a simple expression for the relaxation time of excited electrons which shows that its shape can be understood by a phase space argument and its amplitude is governed by the d-hole lifetime. We also find that the height of the peak depends on both the ratio of the optical transition matrix elements R=|M_{d \to sp}|^2/|M_{sp \to sp}|^2 and the laser pulse duration. Assuming a reasonable value for the ratio, namely R = 2, and a d-hole lifetime of tau_h=35 fs, we obtain for the calculated height of the peak Delta tau_{th}=14 fs, in fair agreement with Delta tau_{exp} \approx 17 fs measured for polycrystalline Cu.Comment: 6 pages, 6 figure
    • …
    corecore