150,537 research outputs found
Variations in radiocarbon ages of various organic fractions in core sediments from Erhai Lake, SW China
Radiocarbon dating was performed for the extracted organic fractions (cellulose-rich and humic acid fractions of plant fragment; fulvic acid, humic acid and humin fractions of humus substance) and shell from core sediments of the Erhai Lake, SW China. The C-14 dating results reveal that there are considerable differences, but there apparently is a humic acid less than or equal to humin < fulvic acid fraction sequence of C-14 age increase. The variability in radiocarbon ages of organic fraction of lake sediment suggests that special caution is necessary when radiocarbon ages of bulk sediments are used.
The linear correlation between C-14 age of allochthonous terrestrial macrofossil (plant fragment and shell) and depth indicates roughly a constant sedimentation rate of ca. 0.7 rum yr(-1) in central Erhai Lake since 4500 yr BP. The C-14 ages of the autochthonous humic acid fraction are 210similar to4800 yr shift from "the true C-14 age" obtained by interpolating the corresponding horizontal level to the above C-14 age-depth correlation. Such age difference may be alternatively attributed to a uniform reservoir effect (most likely ca. 300 yr). The period with large C-14 age shift synchronizes with the period of changes in (delta(13)C and ARM intensity and ARM/susceptibility values
A study of physical processes for space radiation protection
The determination of stopping power for monatomic molecules and water vapor is addressed. Intermediate and low energy protons are considered
TandemNet: Distilling Knowledge from Medical Images Using Diagnostic Reports as Optional Semantic References
In this paper, we introduce the semantic knowledge of medical images from
their diagnostic reports to provide an inspirational network training and an
interpretable prediction mechanism with our proposed novel multimodal neural
network, namely TandemNet. Inside TandemNet, a language model is used to
represent report text, which cooperates with the image model in a tandem
scheme. We propose a novel dual-attention model that facilitates high-level
interactions between visual and semantic information and effectively distills
useful features for prediction. In the testing stage, TandemNet can make
accurate image prediction with an optional report text input. It also
interprets its prediction by producing attention on the image and text
informative feature pieces, and further generating diagnostic report
paragraphs. Based on a pathological bladder cancer images and their diagnostic
reports (BCIDR) dataset, sufficient experiments demonstrate that our method
effectively learns and integrates knowledge from multimodalities and obtains
significantly improved performance than comparing baselines.Comment: MICCAI2017 Ora
Matrix approach to the Shapley value and dual similar associated consistency
Replacing associated consistency in Hamiache's axiom system by dual similar associated consistency, we axiomatize the Shapley value as the unique value verifying the inessential game property, continuity and dual similar associated consistency. Continuing the matrix analysis for Hamiache's axiomatization of the Shapley value, we construct the dual similar associated game and introduce the dual similar associated transformation matrix as well. In the game theoretic framework we show that the dual game of the dual similar associated game is Hamiache's associated game of the dual game. For the purpose of matrix analysis, we derive the similarity relationship between the dual similar associated transformation matrix and associated transformation matrix for Hamiache's associated game, where the transformation matrix represents the duality operator on games. This similarity of matrices transfers associated consistency into dual similar associated consistency, and also implies the inessential property for the limit game of the convergent sequence of repeated dual similar associated games. We conclude this paper with three tables summarizing all matrix results
Evidence for anisotropic polar nanoregions in relaxor PMN: A neutron study of the elastic constants and anomalous TA phonon damping
We use neutron scattering to characterize the acoustic phonons in the relaxor
PMN and demonstrate the presence of an anisotropic damping mechanism directly
related to short-range, polar correlations. For a large range of temperatures
above Tc ~ 210, K, where dynamic polar correlations exist, acoustic phonons
propagating along [1\bar{1}0] and polarized along [110] (TA2 phonons) are
overdamped and softened across most of the Brillouin zone. By contrast,
acoustic phonons propagating along [100] and polarized along [001] (TA1
phonons) are overdamped and softened for only a limited range of wavevectors.
The anisotropy and temperature dependence of the acoustic phonon energy
linewidth are directly correlated with the elastic diffuse scattering,
indicating that polar nanoregions are the cause of the anomalous behavior. The
damping and softening vanish for q -> 0, i.e. for long-wavelength acoustic
phonons, which supports the notion that the anomalous damping is a result of
the coupling between the relaxational component of the diffuse scattering and
the harmonic TA phonons. Therefore, these effects are not due to large changes
in the elastic constants with temperature because the elastic constants
correspond to the long-wavelength limit. We compare the elastic constants we
measure to those from Brillouin scattering and to values reported for pure PT.
We show that while the values of C44 are quite similar, those for C11 and C12
are significantly less in PMN and result in a softening of (C11-C12) over PT.
There is also an increased elastic anisotropy (2C44/(C11-C12)) versus that in
PT. These results suggest an instability to TA2 acoustic fluctuations in
relaxors. We discuss our results in the context of the debate over the
"waterfall" effect and show that they are inconsistent with TA-TO phonon
coupling or other models that invoke the presence of a second optic mode.Comment: (21 pages, 16 figures, to be published in Physical Review B
High Bandwidth Atomic Magnetometery with Continuous Quantum Non-demolition Measurements
We describe an experimental study of spin-projection noise in a high
sensitivity alkali-metal magnetometer. We demonstrate a four-fold improvement
in the measurement bandwidth of the magnetometer using continuous quantum
non-demolition (QND) measurements. Operating in the scalar mode with a
measurement volume of 2 cm^3 we achieve magnetic field sensitivity of 22
fT/Hz^(1/2) and a bandwidth of 1.9 kHz with a spin polarization of only 1%. Our
experimental arrangement is naturally back-action evading and can be used to
realize sub-fT sensitivity with a highly polarized spin-squeezed atomic vapor.Comment: 4 page
Learning-aided Stochastic Network Optimization with Imperfect State Prediction
We investigate the problem of stochastic network optimization in the presence
of imperfect state prediction and non-stationarity. Based on a novel
distribution-accuracy curve prediction model, we develop the predictive
learning-aided control (PLC) algorithm, which jointly utilizes historic and
predicted network state information for decision making. PLC is an online
algorithm that requires zero a-prior system statistical information, and
consists of three key components, namely sequential distribution estimation and
change detection, dual learning, and online queue-based control.
Specifically, we show that PLC simultaneously achieves good long-term
performance, short-term queue size reduction, accurate change detection, and
fast algorithm convergence. In particular, for stationary networks, PLC
achieves a near-optimal , utility-delay
tradeoff. For non-stationary networks, \plc{} obtains an
utility-backlog tradeoff for distributions that last
time, where
is the prediction accuracy and is a constant (the
Backpressue algorithm \cite{neelynowbook} requires an length
for the same utility performance with a larger backlog). Moreover, PLC detects
distribution change slots faster with high probability ( is the
prediction size) and achieves an convergence time. Our results demonstrate
that state prediction (even imperfect) can help (i) achieve faster detection
and convergence, and (ii) obtain better utility-delay tradeoffs
An Extreme-AO Search for Giant Planets around a White Dwarf --VLT/SPHERE performance on a faint target GD 50
CONTEXT. Little is known about the planetary systems around single white
dwarfs although there is strong evidence that they do exist.
AIMS. We performed a pilot study with the extreme-AO system on the
Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) on the Very
Large Telescopes (VLT) to look for giant planets around a young white dwarf, GD
50.
METHODS. We were awarded science verification time on the new ESO instrument
SPHERE. Observations were made with the InfraRed Dual-band Imager and
Spectrograph in classical imaging mode in H band.
RESULTS. Despite the faintness of the target (14.2 mag in R band), the AO
loop was closed and a strehl of 37\% was reached in H band. No objects were
detected around GD 50. We achieved a 5-sigma contrast of 6.2, 8.0 and 8.25 mags
at 0{\farcs}2, 0{\farcs}4 and 0{\farcs}6 and beyond, respectively. We exclude
any substellar objects more massive than 4.0 M at 6.2 AU, 2.9
M at 12.4 AU and 2.8 M at 18.6 AU and beyond. This
rivals the previous upper limit set by Spitzer. We further show that SPHERE is
the most promising instrument available to search for close-in substellar
objects around nearby white dwarfs.Comment: A&A letters, accepte
Spatiotemporal Patterns and Predictability of Cyberattacks
Y.C.L. was supported by Air Force Office of Scientific Research (AFOSR) under grant no. FA9550-10-1-0083 and Army Research Office (ARO) under grant no. W911NF-14-1-0504. S.X. was supported by Army Research Office (ARO) under grant no. W911NF-13-1-0141. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
- …
