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A STUDY OF PHYSICAL PROCESSES FOR SPACE RADIATION PROTECTION

By

G.S. Khandelwal l and Y. J. Xu2

The performance on the above project, during this period, can best be

described by the following three items (two research papers and one

dissertation), which are described in detail in the papers attached with

this report.

r 1. Intermediate Energy Proton Stopping Power for Hydrogen Molecules
and Monoatomic Heli um Gas, Physics Lett. A (in press).	 M

2. Low-energy proton stopping power of N 2 , 022, and water vapor
(Revised for publication in the Physical Keview.) 	 ^'

a	 ^

3. A theoretical model for calculating molecular stopping power,
Y.J. Xu's dissertation, to be submitted to the faculty in partial]
fulfillment of the requirement of the Ph. D. degree in Applied
Ph ys ics.

>k	 ,

y:A	 i

a
I;.a

TEminent Professor, Department of Physics, Old Dominion University, Norfolk,
Virginia 23508.

2 Graduate Research Assistant, Department of Physics, Old Dominion
University, Norfolk, Virginia 23508.
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Intermediate Energy Proton Stopping Power

for Hydrogen molecules and Monoatomic Helium Gas

Y. J. Xu and G. S. Rhandelwal

Department of Physics, Old Dominion University

Norfolk, Virginia 23508

U.S.A.

and

J. W. Wilson

NASA Langley Research Center

Hampton, Virginia 23665

U.S.A.

ABSTRACT

Stopping power in the intermediate energy region (100 keV to 1 MeV)

s been investigated, based on the work of Lindhard and Winther, and on

e local plasma model. The theory is applied to calculate stopping power

hydrogen molecules and helium gas for protons of A; •,ergy ranging from

3 keV to 2.5 MeV. Agreement with the experimental data is found to be

thin 10 percent.
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Recent investigations suggest the usefulness of the local plasma

model of Lindhard and Scharff (1) in calculating the mean excitation

energies ( 2-5) of various systems. As is known, such calculations of mean

excitation energy help in readily obtaining stopping power for high energy

incident particles. On the other hand, the so called intermediate energy

region (100 keV to 1 MoV in the Context of this paper) is of considerable

interest. Unfortunately, the theoretical calculations in this energy

region are hindered, primarily due to the complexity of the problem.

Bonderup's (6)	 theoretical calculations of stopping power for some

elements, however, seem to be in good agreement with experimental results
ru

for incident proton energy above 500 keV. a

In this letter, we present calculations of stopping power based on

the work of Lindhard and Winther (7), and on the local plasma model of

Lindhard and Scharff.	 The theory is expected to cover the intermediate ^,}
t

energy region while retaining its applicability for the high energy* b.

case.	 The method should be easily applicable for calculating stopping

power of different materials composed of molecules such as H 2 and N2

gases, water vapor, and many other chemical systems of interest.	 The

method first establishes a stopping number function L, based on Lindhardq°

and Winther's formulas.	 Next, the Gordon-Kim model [8]	 for density

function of a H2 molecule is used to calculate its stopping power in the
tq 	

S

energy region from 100 keV to 2.5 MeV. 	 Calculations are also performed V

for the monoatomic Helium gas.;;
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The celebrated stopping power formula for an energetic charged

particle of charge ze and velocity v, traversing matter of charge number Z

is given by:

_ dE4nz2e4_	
NZL	 (1)

dx mV7

where m is the mass of an electron, and N is the number of atoms per unit

volume of the medium.

The stopping number L of Eq. (1) has been a topic of considerable

study. Most interest, however, has usually been centered on the high

2

	

energy case for which L attains a simple formula, L = In 
2mI	

In this

situation, only one parameter I, the mean excitation energy of the medium,

determines the stopping power. Lindhard and Winther have investigated the

function L for a free electron gas in the regions of low and high energy

incident charged particles. These authors (6, 7] give for the high energy

case, the expression for L to order 
v2 

as:

L = In Y - < T >	 (2)
2 mv2

where, Y = hwv2, the classical plasma frequency W 2= 4upe , p the
p	 P

electron density, and < T >, the average kinetic energy is given by

< T > = (moo ) mvF2,

where v  is the Fermi velocity.

For the low energy case, they give:

L _ (3 ")3/4 Y3/2 C (X)

where,
1 + 2X2	 1 - 1X2

C (X)
1
	log ^-----3^----- - -- 3

1	
2 (1 - A ) 2	 X	 1 ,. 2 2

with	
3	 3X

2e2
X = nhvF

I .

(3)

M.

';

i

roL ^^
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The calculational procedure in this paper proceeds with the

exploitation of Eqs. (2) and (3) with the following modifications in

mind. First, as shown in a previous reference in context with the

calculations of mean excitation energy, due to the Pine correction, one

should replace w  by Y 
P 

in the equations for L function where, y is given

by (2, 91

2
y = 1 + 2 l-- ( 1 + 100 p 2	 (4)

s
where %	

Ys
s a0 is the average distance between electrons in units of Bohr

radius. The parameter P is determined by solving the following equation

0.076 p2 + X s1/2 - 0.916 = 0
s

The equation (2) for the L function warrants some discussion. First,

one notes that the L function of Eqs. (2) and (3) are derived by Lindhard

and Winther for a free electron system. Transition to an atomic system of

the first term of Eq. (2), as studied widely, is accomplished under the so

called local plasma model in which density p (r) is evaluated by using

Quantum mechanical wave functions. Such a Quantum mechanical analogue of

the second term of Eq. (1) would be of interest. In this context, a

*. 	 result first derived by Brown (10] would prove to be useful. Brown

studied the K-shell asymptotic stopping power of an Hydrogenic system

(with 2 K-electrons) for a fast projectile, taking the maximum momentum

k',	 transfer to a free electron appropriately equal to 2mv. He obtained for

the second term in Eq. (2) for an Hydrogenic system, the quantity

^	
T	

Thus, in order to make a transition to an atomic system
2	

2 
mv2

consistant with the free electron model, we assume Brown's result and
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accordingly repS.ace Eq. (2) by:
1.5

L = In Y - 1^X 1
	

(5)

At this stage, we combine the low and high enerTi L functions to

determine the appropriate dependence of stopping power on energy. To do 	 ti

this, we used equations (3), (4) and (5) for our desired results. 	
;I

Bonderup, in his calculations, had combined Eqs. (2) and (3) and assumed a

constant value of Y equal to 32. Furthermore, we attempt to preserve 	 d

continuity Y- tween L 1 (., v) , the low energy stopping number function

given by Eq. (3) and L 2 (r, v), the high energy function given by Eq.	 f

(5), in the following way. Extensive numerical evaluations, using a

computer program, of the functions L 1 and L2 for various values of the

variable Y, revealed that in most useful cases there were found two

roots Y 1 and Y 2 of the equation L 1 = L2 where Y 1 < Y2 . Furthermore, the

slope M of the function L2 for values of Y greater than Y2 was always
.` r•

small. On the other hand, the slope of L 2 for Y values less than Y 1 was

very steep. These observations, including the behavior of these functions
k

(see the figure), led us to the following recipe to preserve the i
3!

continuity consistent with the physics of the situation:

L = L	 when MY < L2 2

(6)

L = Max [L 1 , L2 ]	 when MY > L2
s	 1

*	 L	 j

'-

where, L. and L2 are given by Eq.	 (3) and (5) respectively.	 Eq.	 (6)	 can }`
D s	 ^

now be used to obtain stopping number ;values for a system, given the

velocity of the projectile and the density p (r). For a molecule, Gordon-
.^. N.

Kim give the density as:
kE	 aD''	 )

fi k

^x
x

5

p (r) = p 1 (r) + p2 ( -r► 	 R12^	 (7)
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where, p1 (r) is given by the square of the ground state wave function of

the hydrogen atom. R 
1 

is the distance between two hydrogen atoms, which

is known to be 1.4x 0 . Knowing the density by Eq. (7), stopping

power was obtained by integrating Eq. (6) over r, for protons of energy

between 100 keV and 2.5 MeV, for boV6 H2 and monoatomic helium gas. For

He atoms, Hartree-Fock wave functions (11] were employed. Table 1 lists

the results of this paper, together with Anderson-Ziegler curve fitted

results ` 1 12), and three sets of experimental data ( 13, 14, 151. Good

agreement, within 10 percent, is found with the experimental data.

Calculations of the equations established by Bonderup were also undertaken

by extending them to molecular systems. Table 1 lists these values for

the H2 molecule in the last column. These differ from our results in the 	 1

low energy region. Table 2 lists the same physical q-iantities for helium

gas (14-181. The same trend is observed as in the case of the H molecule.
2	 !

r
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The low and high energy stopping number functions  a n functions of the

variable Y. A typical value equal  to 0.1 of the quantity X2 was chosen.
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Low-energy proton stopping power of N2 . 02 , and water vapor,

and deviations from Bragg's rule

Y. J. Xu and G. S. Khandelwal

Department of Physics, Old Dominion Uni:,ersity, Norfolk, Virginia 23508

and

J. W. Wilson

r

ti

ABSTRACT

A modified local plasma model, based on the works of Li ndhard and

Winther; Bethe, Brown, and Walske, is established. The Gordon -Kim model for:. _o

molecular electron density is used to calculate stopping power of N2, 02,

and water vapor for protons of energy ranging from 40 keV to 2 . 5 Me V,

resulting in good agreement with experimental data. Deviations from Bragg's 	 ,.

rule are evaluated and are discussed under the present theoretical model.`
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Recently, departures from Bragg's rule have been noticed in the theo-

retical calculations of the mean excitation energies of various molecular ,a

1	 2

systems.	 Analysis of the experimental data on energy loss of low energy

a	 particles in gases also indicates deviations from Bragg's rule. 3 -5 	In

this paper, the stopping power theory of Lindhard and Winther, 6 	and the E

local plasma theory of Lin6iard and Scharff, 9 are used to perform calcula-

tions in the low energy region.	 Modifications are introduced through a

simplifying model which incorporates the effects of the shell correctioi;s

and of the screening of the projectile.	 The model	 is justified on the basis

of fulfilling the more ambitious aim of obtaining the molecular stopping
a

power.	 The Gordon-Kime electron density model of molecular wave functions

is utilized in the calculations. 	 Such a model, 	 as is known,	 allows	 a

successful method of calculating chemical bond effects. 	 Calculations done,

on	 N 2 , 02	and water vapor are found to be in fair agreement with experi -

ments.	 Furthermore, departures from the Bragg's rule are noticed for all

h, these systems.
rt

V:.

. The celebrated stopping power formula for an energetic charged particle
,.

of	 charge ze and velocity v, traversing matter of charge n unber Z is given
a

by
rw`	 u4

_ dE = 44z2e4	 NZL	 (1)— — j
dx	 mv2

I

where	 m	 is the mass of an electron, and	 N	 is the n unber of atoms per ^#

unit volume of the medium.

The stopping number	 L	 of Eq.	 (1) has been a topic of considerable

m	 #! study.	 For instance,	 Lindhard and Winther have investigated the function- 	 L `r



Ey

3

for a free electron gas in the regions of low and high energy incident

charged particles. These authors give for the high energy case, the expres-

sion for L to order —vr as

< T

	

L	 ln Y

(2)MV2

2) 1/2LMV2	 Pe
2

where, Y 
hw	

the classical plasma frequency wp	
m	

P
p

the electron density, and < T >, the average kinetic energy is given by

	

< T	
3	 2mv

F

where v is the Fermi velocity.
F

For the low energy case, they give

2 3/4	 3/2	 (3)
L	 (x	 Y	 C1(x)3

where

+ 2 x 2	 X2
3

CIW	 Oge
	 2

2 
(1	 X 2 2	

x 2	 + 3 X2
3

with

2 h2	 e
x

7	 1TAV	 27r
F
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Equation (2) for the L function warrants some discussion. First, one

notes that the L function of Eqs. (2) and (3) are derived by Lindhard and

Winther for free electron system. Transition tj an atomic system of the

first term of Eq. (2), as studied widely, is accomplished under the so-

called local plasma model in which density P (r) is evaluated by using

quantun mechanical wave functions. The local plasma model is equivalent to

replacing the molecular dipole oscillator strengths by the corresponding

classical plasma absorption spectrum. The adequacy of such a replacement

was recently shown by Johnson and Inokuti 9 to be most accurate for evaluat-

ing atomic quantities associated with stopping power inspite of differences

.°
	

between the plasma spectrum and the actual oscillator strength distribution.

`H	 A quantun mechanical analogue of the second term of Eq. (2) would be of
w-h

interest. In this context, a result first derived by Brown would prove to

be useful. Brown 10 studied the K-shell asymptotic stopping power of an

h ydrogenic system (with 2 K-electrons) for a fast projectile, taking the

a	
maximum momentun transfer equal to 2mv• as if the electron was free. The

asymptotic stopping power equation obtained by Brown can be expressed in a

form similar to the Eq. (2). The first terms of both of these equations,

since they involve the mean excitation energy, can be assured essentially

equivalent within the local plasma approximation. He obtained for the

second term in Eq.	 (2) for an hydrogenic system, the quantity 1/n s	where,

1ns m v2 /ZS R	 where	 Zs	is the effective nuclear charge for s-shell
2

w	 a ( s =K,L, ...)	 and	 R	 is the Rydberg Constant.	 Walske, 11 on the other hand,

took the upper limit for momentum transfer to be infinity, thus overestimat-
R'

4

ing the nuclear momentun recoil i ng and obtained instead	 2/ns. Tn	 reality,
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however, due to the recoiling of the nucleus. the result should be expected

to fall somewhere between 1A 	 and 2A s 4 This fact will be incorporated

1 ater ( see Eq. (6)) as a parameter which we later estimate. At the

present, however ., for the sake of simplicity, combining Brown's result for

the K-shell with Walske's result for the L-shell, 12 but retaining the

consistency with the free election model, we write the analogous second term

(known as shell correction) for an hydrogenic system with Z electrons as

1	 1	 Z-2
C = CK' 

total + c _

	
+L	 n K
	nL (Z-2)

)

which can be rewritten for a real atom as

C _	 <T>_	
(Z)1 

;nv2
L

where 0 (Z) = Z . f(Z)g

and <T> = Z [ZKR + (Z-2) 4 Z2 R] .

In the above, a coefficient f(Z) has been introduced to distinguish a

real atom from an hydrogenic one. The coefficient f(Z) is known to be

less than unity for L-shells for low atomic number targets. The coefficient

g is introduced to incorporate the effect due to the recoiling of the

nucleus.

(4)

(5)

(6)

(7)
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At this stage, it is appropriate to discuss various features associated

with the low energy projectiles and the low atomic number targets. First,

in the low energy region, the projectile's full charge z will not be oper-

ational in the stopping process due to electron capture that is influenced

mainly by the outer shell electrons of the medium. Second, Walske has

pointed out that tl,,- coefficients f(Z) are unreliable for the low atomic

numbers Z < 30 due to use of the hydrogenic wave functions.

It is, evident from the above observations that some sort of crude

w estimate of the quantity 	 C is in order.	 This is justified since the usual
P

incorporation of these effects involves the fitting with the experimental

data.	 The inclusion of the effect of projectile's effective charge should

decrease the stopping number for all the elements; for	 Li	 the most and for

` Ne	 the least.	 In order to incorporate this effect and the other problem

of the need for an accurate value of the coefficient 	 f(Z) as stated above,

it is reasonable as a first approximation to assume a semiempirical constant

value of the quantity ^ (Z) equal to• half the total number of electrons in

noble gas atoms. Such a division should over-estimate shell corrections forr..
lithium and beryllium in decreasing fashion and under-estimate that for

' helium,	 neon, carbon,	 nitrogen,	 oxygen and fluorine also in a decreasing

manner.	 Such a change in shell corrections is indeed what is needed as

almost entirely compensating the effect of the effective charge of the

projectile on the stopping power.	 Since,	 in this paper we are interested
s

in the atoms with atomic number below 10 this assumption implies that

^ (Z) = 1 for Z < 2, (8)

N	
0 (Z) = 5
	

for 3 < Z < 10.
s .
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Implicit in the above partition of ^ is the fact that the quantity C no

longer represents the so-called shell corrections only, but presumably also

some other effects including that due to the projectile's effective charge

as well as due to the neglect of the higher order terms in Eq. (2). One can

now write Eq. (5) as:

C = 1 <T>	 1 for Z < 2,
Z 2 FV2 Z

(9)
and	 C 1 <T> , 5	 for 3 < Z < 10,T,—.,

where <T> by virial theorem is just the average kinetic energy of the

electron and should be averaged over all the Z electrons in the atom.

In order tc make a transition to an atomic system, we assume the above
e

results and accordingly replace Eq. (2) with

i`
1.5

+	 L = xn Y - 3- ẑ	for Z4 2,

(10)
v	 31.5	 1
- 	 L=in Y - x	 7- for 34 Z4 10,

If	 The low and high energy L functions should now be combined to deter-

mine the appropriate dependence of the stopping power on energy. To do

this, we used Eqs. ( 3) and ( 10) for our desired results after replacing wp
K

,x

4

^S	
+ YI
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by	 Ywp 	in them, where nonconstant values of 	 •t were obtained from

? reference 2.	 Bonderup, la had combined Eqs.	 (2) and (3)	 and assumed a con-

stant value of	 Y	 equal to J 2	 Unlike Bonderup, we tried to preserve the

continuity between the low energy stopping number function given by Eq. (3)

and the high energy function given by Eq.	 (10)..	 In this way, stopping

number values for a system can be obtained given the velocity of the pro- .,

jectile and the density p 	 (rl.
For a diatomic molecule, the Gordon-Kim model gives the density as:

r „ p molecule = a s	 r) + Pb (r -ab),	 (11)I
M1

^"M11y;r

i

where	 p a (r) is the atomic groundstate density. 	 R ab	 is the distance }

c• between the two atoms, which is known to be 1.094A 	 for	 N2	 and	 1.207A

. for the	 02	 molecule.	 Equation	 (11)	 was generalized for water vapor
$	 +	 k

including its partial ionic bond nature and neglecting the overlap between'
^i

the two H-atoms.	 The distance between' the	 0	 and	 H	 nuclei was taken
1	 A

A{ 

equal to 0.958A.

The molecular stopping power for protons was obtained by averaging the

stopping number over	 r	 for	 N2 ,	 02	 and water vapor molecules.	 Hartrep-
i

Pock wave functions were employed in these ca1^ulations.
.

F. Table I lists the results of this paper, together with Andersen-Ziegler .t '

curve fitted results, 1w and two sets of experimental data for the 	 02^,°};
4_f

molecules.	 Table II lists these values for the	 N2	 molecule.	 In table

11 Y

s.
III, the results of this paper for water vapor are compared with the'Y^k;

'R available experimental data for energy ranging from 40 keV to 500 keV.	 Good '	 1

i

L;
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agreement, within 10 percent, is found with the experimental data.

In order to discuss the departures from Bragg's rule, it would be

relevant to cite, a systematic study carried out in a series of experiments

at Baylor University. 3 -5 The study revealed that for low energy projectiles

there may exist a deviation from Bragg's rule depending on the physical

state, but most importantly, on the chemical structure of the compounds.
f

The confusing status of the dependence on the chemical structure can best be
J

described by citing these studies in chronological order. First in 1971,.

the Baylor group3 summarized that the compounds with single bond and double
F-

bonds should obey Bragg's rule. The compounds containing triple-bond struc-

ture were found to deviate from Bragg's rule by as much as 12.8% (a pnrt-

cles of energy between 0.3 and 2.0 MeV often were the projectiles). In

particular, these authors indicated that the molecular hydrogen (single

bonded molecule) should obey Bragg's rule. Later i n 1972, the Baylor group4

_.	 critically looked again on their previous conclusions. They indicated that

perhaps the hydrogen atomic stopping cross section may be considerably dif-

ferent than one-half of the molecular stopping cross section and thus should

,.7
cause considerable deyiations. However, the Baylor group in 1914, 5 recog-

nizing the difficulty of obtaining atomic cross sections experimentally,

based their analysis on the existence of some modified, but unique atomic

stopping cross sections.

It is therefore imperative that in order to discuss the deviations from

the Bragg's rule, one must have access to the atomic and molecular stopping

cross sections. We calculated both the atomic and the molecular stopping

cross sections as a function of projectile energy for the molecules 02,

N2, and H2 . These results together with the deviations from Bragg's rule
1

f;i

^ IJ
x

E



single-bonded carbon.

I	 10

are exhibited in tables IV, V, and VI. One sees that the deviations from

Bragg's rule become small as incident energy increases -- in agreement with

observations made by many workers including those at Baylor University.' It

is to be noted that N2 is a triple-bonded, 02 a double-bonded (from the

bond energy point of view) and N2 is a single-bonded molecule. The

maximum deviations from Bragg's rule for energy 100 keV and above are 6.1%,

2.6%, and 10%, respectively, for these molecules. Thus, the deviation

depends on the chemical structure. When the Gordon-Kim model is used, the

overlap of electron density determines the deviation or molecular binding 	 }

effects. For 'instance, for the hydrogen molecule, the distance between
y

nucleons is very small, equal to 0.74A. It is expected that the overlap of 	 i
electron density is large, thus explaining the considerable deviation from

the Bragg 's rule. The stronger the bond energy, the shorter the distance

will be. It is interesting to note that single-bonded, double-bonded and

triple-bonded carbon molecules have internuclear distances equal to 2.94,

2.52 and 2.24 in Bohr units, respectively. We may thus expect that the

triple-bonded carbon will have more deviation from Bragg's rule than the

The work was part
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Theoretical
Values of
the Present

Curve
Fitted
Values
Andersen
and

EXPERIMENTAL RESULTS

Reynolds

E(keV) Paper Ziegler14 et al. 15 Langley16

40 15.89 14.6 15.2 ±2:6 -

80 17.48 17.0 17.25±2.6 -

100 17.43 17.0 17,17±2.6 -

300 11.84 11.9 11.99±1.7 -

500 8.92 8.8 8.84±1.7 -

1037 5.64 - - 5.25

2591 2.97 - - 2.85

^'7 N

M'

IL

w

s

k

12

TABLE I. Proton stopping cross section values (in units of 10- 1$ eV cm2)
per atom. These were obtained by dividing by two, the stopping
cross section per molecule of the oxygen molecule.
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TABLE II. Proton stopping cross section values (in units of 10- 15 eV cm2)
per atom. These were obtained by dividing by two, the stopping
cross section per molecule of the nitrogen molecule.

Theoretical
Values of
the Present

Curve
Fitted
Values
Andersen
and

EXPERIMENTAL RESULTS

Reynolds
E(keV) Paper Ziegler14 et	 al. 15 Langley16

40 17.20 16 17.1 ±2.6

80 18.41 17.9 18.5 ±2.6

100 17.79 17.7 17.9 ±2.6

300 10.85 11.2 11.2 ±1.7

500 8.10 8.1 8.08±1.7

1037 5.20 4.78

2591 2.71 2.56
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TABLE III. Proton stopping cross section values (in units of :10` 15 eV cm2)
per molecule for water vapor.

E(keV) 40 80 100 300 500

Theoretical
Values of
the Present 28.81 27.8 26.8 17.1 12.6
Paper

Reynolds et al. 14 25.0±2.6 27.6±2.6 27.3±2.6 17.9±1.7 13.0±1.7



4

15

TABLE IV. Deviations from Bragg's rule in the case of oxygen molecule.
c(atomic), the atomic stopping cross section (in units of
eV x 10- 15 cm2/atom) was obt ined from Eqs. (3) and (10).
e (molecule) is in units of 

2 

eV x 10- 1 5 cm2/molecule.

E(keV) 40 100 200 300 500 1037 100000

e(atomic) 17.44 17.48' 14.65 12.15 9.1 5.72 0.1492

e(molecule) 15.89 17.43 14.36 11.84 8.92 5.64 0.1476

percentage
deviation 

8.9 0.3 2 2.6 2 1.4 1.1

TABLE V. Deviations from Bragg's rule in the case of nitrogen molecule.
e(atomic), the atomic stopping cross section (in units of
eV x 10-15 cm2/atom) was obt ined from Eqs. (3) and (10).
e (molecule) is in units of 2.eV x 10- 15 cm2/molecule.-

E(keV) 40 100 200 300 500 1037 100000

e(atom`ic) 19.33 18.57 14.32 11.56 8.53 5.30 0.1340

e(molecule) 17:20 17.79 13.75 10.85 8.10 5.20 0.1319

percentage
deviation

11 4.2 4.00 6.1 5.0 1.9 1,3
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TABLE VI	 Deviations from Bragg' s rule in the case of hydrogen molecule
e(2xatomic) I the atomic stopping cross section (in units of
eV x 10- 15 cm2/atom) was obtained from Eqs. (3) and (10).
e (molecule) is in units of eV x 10- 15 cm2/molecule.

E(keV) 100 200 300 500 800 1037 2591

e(2 x atomic) 12.7 8.13 6.1 4.17 2.89 2.36 1.11

e(molecule) 11.43 7.53 5.71 3.93 2.75 2.24 1.07

percentage
deviation

10 7.4 6.4 5.8 4.8 5,1 3.b
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ABSTRACT

A modified local plasma model based on Linhard-Winther, Bethe, Brown,

and Walske is established. The Gordon-Kim's molecular charged density model

is employed to obtain a formula to evaluate the stopping power of many

useful molecular systems. The stopping power of H2 and He gas was

calculated for incident proton energy ranging from 100 keV to 2.5 Me V. The

stopping power of 02 , N2 and water vapor was also calculated for incident

proton energy ranging from 40 keV to 2.5 Me V. Good agreement with experi-

mental data was obtained.

A discussion of molecular effects leading to departure from Br agg's

rule are presented in this thesis. The equipartition rule and the effect of

nuclear momentun recoiling in stopping power are also discussed in the

appendix. The calculational procedure presented in this thesis hopefully

can easily be extended to include the most useful organic systems such as

the molecules compound of carbon, nitrogen, hydrogen and oxygen which are

useful in radiation protection field.
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INTRODUCTION

The subject of energy loss of heavy ions such as protons, or a par-

ticles passing through matter, has been studied for more than sixty years.

Research in this area began with the study of a mechanism under which

charged particles lose their energy mainly to the atomic electrons. These

studies have contributed to the basic understanding of the interaction of

charged particles with matter-atoms-molecules and, more recently, to materi-

als. The energy loss parameters have found their use in various appl ica-

tions. The list includes: radiation dose effects on solid state devices;

shielding problem; space radiation research; design and calibration of

spectrometers and dosimeters; proton doses in manned or unmanned space

flights; energy transfer to living cells, and radiation effects in materi-

als, etc.

The Bethe [1] theory of energy loss of fast charged particles rests on

the knowledge of the so-called mean excitation energy.of the medium. Once

this parameter is known, the high energy stopping power of an atom can

7i^
lr̂ 	 readily be calculated. The determination of this parameter, however, is

very laborious, as is seen in the works of Detimer, Inokuti, Saxon, and Baer

[2].) [31, [41, who calculated the mean excitation energy parameter for atoms

of atomic number ranging from Z = 1 to Z = 38. The numerical evaluations

involving the Hartree-Slater wave functions in these calculations are so in-

volved that the estimating of the errors is difficult to ascertain.

The Bethe theory, although developed for the atoms, has also been

extended to obtain the stopping power of molecules under the Bragg's rule

[5]. One essentially ignores the chemical binding of molecules under this

rule. Recently, however, several experiments [6], [7], [8], have revealed



that for low energy regions there may exist deviations from the Bragg's

rule. Furthermore, there are some indications (see, for instance, a series

of papers by Wilson and hi s co-workers) that the Bragg's rule may not be

obeyed in the determination of the mean excitati.. , anergy parameter for

molecules, although this departure does not have much effect on stopping

power because of the dominance of the velocity of the projectile on the

stopping power.

It is evident from the above discussion that the traditional approach

of obtaining the molecular stopping power from the atomic stopping power via

the Bragg' s rul a shout d be abandoned, at least for the low energy projec-

tile. The local plasma model which has been surcessful in predicting the

mean excitation energy could serve as the appropriate candidate for an

alternative approach.

This report discusses the establishment of a modified local plasma

model by employing the Gordon-Kim molecular [9] density model, which
R:

provides a method of calculating molecular stopping power even at quite low

	

f y,
	

proton energies. In spite of the fact that it is a somewhat average model,

calculation is relatively simple, and the calculation of stopping powers of

H2

	 He, 02 , N2 and water vapor are in fair agreement with experimental
a,

data. Modifications to the local plasma model are mainly due to the com-
6^
Y
4 plexity of real atomic and molecular situations. Besides the effects of

-':	 shell corrections, and the screening of projectiles, other effects such as

nuclear recoiling are also involved. Interesting discussions on deviation

from the Bragg's rule and on the modified local plasma model and the conclu-

sions deduced from experimental data are presented in the last section of

	

6M	 this report, "Molecular Effect of Stopping Power."
f^

	^-	 From the theoretical model established in this report, the departure of

stopping power from Bragg's rule only occurs for low velocity projectile
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cases. Devi ation from the Bragg's rule also is found to depend on the

chemical structure of molecules. More overlap of electron clouds is found

to cause more deviation from the Bragg's rule when the Gordon-Kim model is

employed. The geometric structure gives the most important information on

molecular effects.

The basic stopping power theories assume the interaction between the

a	 projectile and the atomic electron, which is assumed initially to be at

rest. While it is true that the overall energy loss must, indeed, take

place in this manner, in some collisions the recoiling of the nucleus cannot

G
be neglected. This is especially true for relatively low incident energies

of the heavy ion. Although the recoil energy may be small due to the heavy

. A mass of the target nucleus, the recoiling momentum may be very large. Thus,

the conservation of momentum will lead to a different value of the momentum

of electrons than has previously been assuned in these theories.

This observation lends itself to solving a three body problem. Thus,

in this report, a semi-classical three body model is established to calcu-

late relevant quantities. Specifically, exact semi-classical three body

calculations are made for a proton incident on a hydrogen atom with the

electron in its first Bohr orbit. The model and the resulting conclusions

especially in regards to the equipartition theorem for shell corrections are

presented in the appendix.

Historical Review

The three prominent theories of penetration of charged particles in

matter are: Bohr's semi-classical theory, Bethe's quantum theory, and

a-
Lindhard's local plasma theory based on the treatment of free electron gas.

Since this paper touches upon all three theories, it is helpful to outline

their main features and assumptions of interest. When appropriate, the

r^
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detailed structure of these theories will also be given,, in later sections.

Semi -Classical Theory

Bohr's semi-classical treatment of the slowing down charged particles,

done as early as 1913 [10], [11], was the first to give the overall

I
characteristic structure and the features of the penetration theory. The

classical parameters appearing in this theory, surprisingly, could later be

calculated or related to the quantum treatment. The main underlying

assunptions and the characteristics of the theory are:

1. The coulomb interaction between the incident-charged particle of
velocity v and the atomic electrons is assumed to be responsible
for energy loss.

2. The momentum transfer is sufficiently small so that the projec-
tile's path is a straight line.

3. The atomic electron is assumed to be at rest.

4. The minimum impact parameter is deteni.,ned from the knowledge of
the maximum momentum transfer of the projectile to a free electron.
The maximum impact parameter is determined under the assumption
that the interaction time must be larger than the orbital period of
the atomic electron.

it

Based on the above assumptions, Bohr obtained the stopping power formu-KI
91

a as:
k

dE

dx

^- ),,, where, ze is the charge of the projectile and N is the nunber of atoms

per unit volume, with Z electrons per atom, and w is the characteristic

atomic frequency.

Equation (1), even though the derivation was based on classical consid-

L_

4
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erations, embodies the main features of the quantum mechanical description

given in the later section. As is known, in both theories, the properties

of the incident ion such ap its charge ze, and its velocity v occur in

this equation, m being the mass of the electron. The properties of the

medium are contained in the quantities N, Z, and w.

Quantal Theory

Bethe ' s non-relativistic calculation of stopping power was performed in

1933 in the first Born approximation [1] and rests mainly on the following

assumptions.

1. The interaction responsible for energy loss is the coulomb inter-

	

:;	 action between the incident ion and i;he atomic electron.,
2; The speed of the ion is much greater than that of the atomic elec-

trons.

3. The calculation of the maximum momentum transfer entails the call i-
sion with the electron initially at rest.

	

'	 4. Within the plane wave Born approximation, the assumption that the
electronic positions are correlated only over relatively small
distances implies the use of the dipole oscillator strengths.

Based on the above assumptions, 9,,the arrived at the following energy-
s,

loss formula:

4®	 ,

dE - 0 NZz2 e4 
1 n 2mv2

dx	 mv2	 I

•',t

	j	 where I, the mean excitation energy of the medium, is defined through the

electric dipole strength fn by:

4	 F

Y

f
1

(2)

j^ 1
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KV,

Z1nI =E fn In En
n

with En being the -Qnenergy of the electron.

Notice the similarity between equations (1) and (2) obtained under

classical and quantal considerations, respectively. Notice also the occur-

ance of the factor 2mv 2 ( which represents the maximum energy transfer of

the assumption (3)) in the argument of log in equation (2).

r	 Theories Based on the Thomas-Fermi Model

Bloch [13], in 1933, calculated the stopping power by using the Thomas-

Fermi model for the many electrons of the atoms of the medium. Useful

t	 results were later obtained by Lindhard [14], [15], [16], and his co-

workers. Lindhard showed that for a swift heavy particle of low charge the

L'	 stopping power of a free electron gas is given by

_ dE _ 47r z2e4 p In ( 2mv2 )
dx	 mv2	 lrhwp

where, p is the electron density, and w 	 is the classical plasma

frequency given by wP = 47re2 
p, and Y is a parameter calculated by

m

Lindhard to be equal to ^ 2. Lindhard made the bold assumption that the

theory can be extended to the atoms if one writes the above equation as:

(3)

R	 jl

Or
e

_ dE = 4n22 e4 N l in	 2mv2	 p(r) 0	 (3a)
dx	 mv2	

Yhw (r)
P
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where, now p(r) is to be evaluated by employing the quantal wave functions

of the electrons. This model is often called a local plasma model, in

literature.

Further Discussion of the Bethe and Lindhard Theories.

The simplicity in Bethe ' s theory results from several factors. The first

factor allows all the atomic electrons to participate in the stopping pro-

cess. Indeed, this is not valid for the inner shell electrons which are

tightly bound and may not always participate in the stopping process. The

t`	 second factor is the inclusion only of the dipole transitions in the theory,

although other transitions (though less probable) may possibly take place.

This, as indicated earlier, is tantamount to assuming that the electronic

por, itions are correlated only over relatively small distances. These

corrections to the Bethe theory have been extensively investigated.

Lindhard's local plasma theory, as mentioned earlier, makes the bold

assumption through equation ( 3) for its application to atomic systems. Thi s

approach, surprisingly, works well for atoms as is shown recently in the

K	 evaluation of the mean excitation energy parameter [17]. The approach rests

with the comparison of equation (3) of Lindhard with the Bethe formula

equation (2):

Z In I= j p( r) I n (Y hw p )	 d3 r
	

(4)

. i	 The local plasma model is also relatively easy to extend to molecules for

1
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ionic bonded gases, covalent bond gases and metals. Such progress has re-

cently been made by various authors. (See, for instance, a series of papers

by Wilson and his co-workers).
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STOPPING NUMBER FUNCTION

The energy loss of fast charged particles caused by their inelastic

collision with atoms, is given with good approximation by Bethe's formula,

which is based on the quantum perturbation theory. However, the mean

excitation energy in his formula is too complicated to evaluate theoretic-

" ally for many practical problems especially for molecules. It appears the

local plasma model affords a simple method to calculate the mean excitation

energy of elements as well as compounds. There still remain three problems

1) people have more interest in stopping power than in mean excitation

energy; 2) how to extend this method to evaluate molecular stopping power;

3) how to extend this method to slow charged particle cases as well as to

fast charged particles cases. Now let us recall the basic formula of local

pl asma model for fast charged particles.

R
r dE	 4 .7r z2 f	 1n 2mv2

p (r)	 d3  (5)
dx	 mv2

YhWp(r)

2
where	 W p (r)

2
= 4nemp (r)	 is the

'
plasma frequency.	 We can see in the above

formula that once the parameter Y	 and the electron density 	 p (r) are

known, the stopping power can be determined immediately.	 We will discuss

the problem of parameter	 Y	 in the section "Local	 Plasma Model for High

- Projecti 1 e' s Energy Cases."

The atomic electron density is just the square of the wave function of

the ground state of the atom. It is not easy to find the molecular wave

function. Fortunately, we have a very simple molecular electron density

model, namely the Gordon-Kim model [9]. It is a rough model, but as a first
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order approximation this model gives the main feature;c of molecular effects.

Detailed discussion will be presented in the next chapter. To extend this

model to low energy regions is of considerable interest from both a practi-

cal and theoretical point of view. Unfortunately, many effects arise at low

energies including projectile charge screening, nuclear momentun recoiling,

forbidden transition, etc. On one hand we have to consider the above

complexity in realistic atomic and molecular world. On the other hand we

still need to keep the simplicity of the local plasma model, otherwise no

results can be obtained in practice. This section is devoted to establish a

modified local plasma model. We will concentrate on finding a stopping

number function L. It should be valid for low energy as well as high energy

cases, and should still retain the simplicity of the local plasma model. It

will also approach the realistic cases as closely as possible. However, it

f
is only an average model and some estimating is involved.

I-	 Local Plasma Model for High Projectiles Energy Case

When the projectiles move rather fast the stopping power can be deter-
kn
tl

mined by Bethe's formula with good accuracy,

- dE _ ^47rz2e''N Z In 2mv2	 6
dx	 mv2	 I

where I, the mean excitation energy has been of considerable study. ibis

t is because once the parameter is known, the energy loss can be obtained

immediately. However, the evaluation of this parameter is considerably

A laborious. In principle, the parameter can be calculated exactly only for
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the H-atom for which accurate wave functions are known. More recently,

Dehmer, Inokuti and Saxon [2] used the tabulation of Hartree-Slater poter, 

tial given by Herman and Skillman. They solved the Schroedinger equation to

obtain the radial matrix element R (nl, n 1 1') where (n,	 1), (n', 1 1 ) are

initial and final states of atom. Knowing these values they calculated the

mean excitation energy parameter I for atoms ranging from Z =1 to Z=38.

However, there are difficulties with the above approach. In practice, the

extreme complexity of numerical calculations renders it impossible to extend

the approach to evaluate the mean excitation energy of molecules.

An alternative approach is the possibility of using the local plasma

model, formula (5) . There are, however, two central quantities which

M' should be known. These are function Y and p (r) . The evaluation of p (r)
^.	 F Iy

3t-

f' rests on the determination of the wave functions of electron' only in ground

states, such Hartree wave function for various atoms have recently been

available in thework of Clementi and Roetti. The problem is then the

determination of parameter Y.

Calculation of Parameter y

In his original theory of stopping power of electron gas Lindhard gave

f_ 

a quantitative discussion for the values of parameter Y. The first term in

high energy expansion of stopping number L is given by in (2mv2 C(x))
x^ii p

where C(x) = Y
	

Linhard discussed the function C(x) as a function of

electron density. He surmised that the function C(x) depends on the den-

sity slightly only. It should be a little bit less than one for moderate

density and should approach unity for both extremely low and extremely high
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densities. Furthermore, Lindhard suggested that the values of Y can be

taken to be unity for light atoms without large error. Later, Lindhard and

Scharff [14] suggested on the basis of a simple model that Y =' 2 can be

chosen for heavier elements.

Chu and Power using constant value of Y =,C2- obtained the parameter

I for various atoms. [17] Their calculated values however were found to

exceed the values calculated by Delmer et al. (based on oscillator strength

method) by 20% to 30%. The most satisfying thing, however, was the similar

trend in the variation of I values in both cases as a function of atomic

numbers. This points towards a greater confidence in the local plasma

theory. Some authors encouraged by this, and also not satisfied with Chu

and Power's results treated the parameter Y as an empirical parameter to

fit the data. Unsatisfied with this type of empirical treatmer^, we adopt

the following approach. Bohm and Pine [18], [19] have treated the problem

of collective long range interaction in a quantum electron gas. They

introduced normal coordinates of collective motion of electron beyond some

screening radius r and the individual particle motion was considered to u v=f c

be more important for radius smaller than	 rc
Bohn and Pine showed that the average plasma frequency <w> (which is i

the average over the frequency of the collective oscillations, say w) is a

linear function of the classical plasma frequency	 wp	 and is given by 1.
r

4 <w>	 [1 _	 (1	 02)]  w	 (7)
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wherex s = r s /ao is a dimensionless parameter and is the average distance

i
ki

K 12
3 ^

4	

`

I

ti

s#



The minimization of the above equation leads to the following equation for s

0.076 g? + 2.598 0 - 0.916 = 0
	

(9)
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between electrons, and where ao is the Bohr radius.

The parameter a can be determined by minimizing the electron long

range correlation energy (the long range part of correlation energy is

obtained by subtracting short range exchange energy from the cohesive

energy)

E lr = 0.866 9 3 - 0.458 02 + 0.019 64	 (8)

corr	
^3J2
	

as	 as
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At this stage let us recall that Bohr's semi-classical theory and Bethe's
1

'	 quantun theory have the similar first term in the high velocity expansion

of

L = In (Zmv2)
E

One must note that E is some average energy which in the case of the Bethel'

h	 theory is the mean excitation energy I. Thus, some sort of average quantity
3 1	

must occur in the argument of log term, therefore, recalling equation (4)

^` 3

J	 of Li ndhard' s theory
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L	 In (2mv2^
Ytl

It was shown by Bohm and Pines that yfu ► p may be replaced by 16 W where
2

<► > is given by equation (7). Thus Y = 1 + 3/2 2 (1 + 3/10 0 2 ). Once we
s

know as then B can be determined by equation (9), hence Y can be

determined by equation (7). Now let us use this average model to evaluate

Y as function of Z for various atoms. We took average distance between
3	 3

electrons in an atom as r	 4s = 3 n ro/Z where ro is atom's radius.	 Then

a s = rs /ao where ao is Bohr radius. Table 1 shows r s , s, a s as

functions of Z for some selected values of Z ranging from Z=2 to

.	 , Z=54.
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Table 1. rs , B as functions of Z

Z
r ^s

8

2 1 2.42 0.54

3 1.55 3.27 0.62

4 1.12 2.15 0.51

5 0.98 1.75 0.46

6 0.91 1.53 0.43

7 0.9 1.43 0.42

10 1.17 1.65 0.45

11 1.9 2.60 0.55

12 1.6 2.13 0.50

13 1.43 1.85 0.47

14 1.32 1.67 0.45

15 1.28 1.58 0.44

16 1.27 1.54 0.43

18 1.43 1.66 0.45

36 1.59 1.47 0.42

54 1.75 1.41 0.41

Table 2 shows Y as a function of Z. From table 2 we can see y is nearly

1 a constant equal to 1.19. This is reasonable, since other workers have

chosen values of y ranging from y	 1.1 to Y = 1.5. Actually in

t.
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Lindhard's description of y it is a function that slightly depends on

density or X s, and is not a constant. We obtained 7 - 1.19 partly

because we took an average model. Table 3 lists Y as a function of as,

(ranging from 10 -18 to 10l }. Since P(r) =	
1

from the table we can see
S

that Y is very slightly dependent on density; a little bit greater than

one for moderate density and approaches unity for both extreme cases - very

low and very high density. Compared with Lindhard ' s qualitative description

Of C(X) = I	 in his theory, as mentioned earlier in this section, we

reach agreement with Lindhard for these two different cases. In the exact

calculations of mean excitation energy using local plasma model, we took 	 Y

^- as fve;^ Li on of distance 	 r	 (distance from electron to nuclei) , instead of a

constant.

Recent development confirmed the concept of 	 Y	 obtained here in E	 i

improving the work of Chu and Powers.	 Furthermure, the above consideration

will be used in the following section for low energy stopping power.

qa

Low Energy Stopping Number Function

Li ndhard -Wi nther expanded the stopping number function of free electron

gas in high energy case and in low energy case as follows:

e L2 = 1 n ^2mv2)	 - <T>	 mv2	 (high energy case) 	 (10),
h^	 2p y,

-	 t
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C1 (X) ( 2-=)
	

( low energy case)

P

2	 X2

where C 1 (X) _ --1 --- [in [ 1=) - 1-=—^— ]	 (12)
2(1- X—) 2	 X2	 1 + X2

3	 3

F

s
^ 2

X2 =	 ^--	 cep =	
4n=	 is the plasma frequency,	 p	 is the electron

VF

j density	 V F	 is the Fermi vela Aty.

Bonderup [20] directly combined low energy 	 L	 function	 L^	 and high

energy	 L	 function	 L2	 and used	 42	 instead	 C(V	 in the first term in

L2 .	 (In [151 Lindhard and Winther assumed 	 C(X) = 1 see last few lines of
}G	 z

page 10) .	 He then performed calculations for the stopping power of some

elements using the above	 L	 function and local	 plasma model. 	 Good agree-

ment was found with experimental data for proton energy over 500 kev.	 Un-

fortunately,, for low energy regions, his simple approach is not valid.

We establish our modified	 L	 function based on the following
r	

'I

principles• b

1.	 smoothly join Linhard-Winther"s high energy 	 L	 function	 Lz	 and 4"
low energy function	 L1;

2.	 involve Pine correction using	 yhw	 instead of	 hw	 in all the
°	

1
terms in	 L	 function; }R

, 3.	 apply correction on the second term of	 L2.
.

r .'A	 p
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	- dE	 47re4z2 N E	 B.

	

dx	 mv2	 i=K,L,M

1
(13)

4

The correction on the second term warrants some discussion.

Many complicated physical effects are involved in the low energy region

We will discuss them in detail to approach the realistic atomic and molecu-

lar world. Bethe, Walske, and Brown [21], (22], [23], developed quantun s
mechanical theory of stopping power of innershells of atoms. Calculations

are done under plane wave Born approximation using hydrogenic wave func-

tions. Brown [21] and Walske [22] had calculated the stopping power of K

shell electron. Walske [23] also calculated the stopping power of L shell

electrons. Khandelwal and Merzbacher [24] calculated the stopping power of

f
M-shell electrons. Khandelwal more recently evaluated K and L shell

corrections [25].	 t

They defined a stopping number function B as follows.

I,	 I .	 ]

where	 Bi = f max gmax	 ^Fwi 	 ( q} 12	
qwdw	 f	 2d (14)

wmin gmin	 q

where	 IFw i ( q) 12 is the form factor,	 q	 is the change in incident parti-

^.
cles momentum divided by	 (2m Zieff	 Ry) T .	 For high energy projectiles,

they also give an asynptotic stopping number formula of the form

B	 (8 n	 )s s	 s = S	 ( es )	 1 n n	 + T ( e	 )	 - C	 ( e	 , n)	 where	 ss	 s	 ss	 s	 s	 s °= K, L,M	 and .

where	 C s are the so called shell correction terms.	 Equation	 (13) can also

be written in terms	of9`.,,n

I

^' x 8 _ Z 1 n	 2mv)	
- E	 Cs	 (e s , n s ) (13a)

1 +fin	
e

I	 s
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where I is the mean excitation energy, e s is dimensionless screening
v

parameter denoting the observed ionization potential in units of ideal

ionization potential Z2 sRy/s2 . ns is also a dimensionless quantity and is

given by 1 mv2 divided by Zeffs Ry'2
The calculations of the she 1 corrections are extremely complex.

Bethe, Brown, and Walske expanded them in power series of —. The first
ITS

term of shell correction given by Brown [21] is Ck total N 
n 

for K shell
k

electron meanwhile Walske's [23] results are Ck total - n . The difference
E	 L

between Brown and Walske is mainly due to the fact that they took different

upper limits to Pstimate maximum momentum and energy transfer. As is well

known when a heavy particle collides with a free electron, the maximum

momentum transferred to the electron is 2mv and maximum energy transfer is
r..

2mv2 these values are the ones taken in by Brown in doing his calculations.

But if one considers the nuclear recoiling and the binding effects, then the

upper limit of momentum transfer is no longer 2mv. Walske took the upper

limit., of both momentum transfer and energy transfer as infinity. Indeed,

r.	 both Brown and Walske simplified the problem in this manner. Later, we'll

use an exact three body semi-classical model to estimate the upper limit of

;;L-	 momentum transfer. Right now, at this stage, we'll use Brown's assumption
k

for consistency with the free electron gas of plasma model, but keep in mind

that there are some errors due to Brown's assumption. The accurate result

should be expected to be between Brown's and Waiske's results. Now we try

Sk

to establish some relationship between plasma model and quantum mechanical

11
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calculation based on Bethe, Brown, and Walske's theory. Following Brown

"L _	 1 <n>
Ck total ~ n

k 	<n> nk

where we define <n> =-L mv 2 /<T>, <T> is the average kinetic energy of
2

electron of atoms then

'	 1	 2

<n> _ 2 
mv2	

Zkeff RY

k <T>	 1 mv2T1 

2

4 T by virial theorem <T> _ ( <E>l we have

2
<n>	 Zkeff Ryn k = I>l .^

For Z = 1 we get

1
C
k 1 z=1 = 2 C  total

hence, we have

_k ^Z =1 = 1 1	 <T>	 1 
(L i nhard-Wi nther' s second term of L function)

Z^Z=1	 2 <n>	 mv2	2•.

For Z = 2 we get

V.	 V	 1,^

T	 k z=2	 k total1	

^
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iC k I z=2 _1	 1 _1
71 z'_2 - 2 <n> -	 (Li nhard - Wj nther' s second term of L2

Now, let us consider atoms which contain L shell electrons.

Walske also showed that the total shell correction of L electron
2

` 	 CL total -
T
 , which is still due to the value infinity for the upper limit

1

of momentun transfer and energy transfer. If we keep Brown's model, i.e.

assume that the incident particle collides with free electron, we have

F' 1 	2my
s	

C
L total	 n	 where nL -	 Now consider L shell closed.

L	 ZLeff2Ry
The total K and L shell corrections is

'r.,.
rS-

C	 C	
1	 + j _ j	 n

	

K total + L total	 nK	 nL ' n K ^ 1 + nK ]
L

^..	 1	 ZLeff2

n K 	 ZKeff2	 <n>	 -ZKeff2	 n 	 3`
C,

^- ff

=	 1	 1+ Z Le ff2

1

2	 mv' /<T> l
<n>	

ZKeff2 1 mv2 /ZK"
2	 eff2 Ry ..	 .

- =	 1	 1 + Z Leff2 ZKeff2	 Ry +..
<n>
	 ZKeff2 <E>

r

^'	

¢r

E
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2Z Ke ff2 RY 
+ 1 z Leff2 Ry e 8	 zI<E>l	 4

Z	
z 2Z Keff2 Ry 	 (J., 

Leff2 I

zKeff2 Z

hence,	 C K total + E L total . - 1	 1

Z	 2 <0

Now consider L shell open:

C K total + C L 2 1— +.1	 (Z-2) = 1 f 1 +
nK	

T'L	
8	 n K	 8	 n L

(Z-2) z Le f f2 z Ke ff2 Ry

<n>	 8	 zKeff2 I <E>

	z Keff2 Ry	 <0

	

I <E> I	 n 

Now I<E>lz[ 2 ZKeff2 RY +Z
	 T2	 Leff2RY (Z-2)]

z
z2	 + ( Z-2) Le ff2i

keff2RY z Keff2

hence,

ir
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+	 1	 ( 1 + (Z-2) ZLeff21 Z / (1+ ( Z -2 ) ZLeff2 )
k total	 L = <n>	 8	 Zkeff2 2	 8 ZKeff2

or CK+ O L = 1	 1

Z	 2 <n>

In both cases either closed shell or open shell we obtained the same results

C	 1 1	 1	 <T>	 <T>	 1	 (Lindhard-Winther's second termr'	 _	 _	 _	 _

Z	 <n>	 2 MV2	 mv2	 of Lz function)

p	 It appears that from quantum perturbation theory we obtained the

.Ysimilar result as of plasma theory except a factor of 2	 Actually if we

use Walske 's result exactly the same results are obtained from both quite

I
	 different approaches. What is implied in this surprising similarity? We

believe this similarity is the real background of local plasma model. In

plasma model average kinetic energy <T> is related to the plasma density.

-j.	 On another side in Bethe-Brown-Walske's theory as we have shown the average

F'	 kinetic energy <T> is related to atomic wave function by using virial

t.	 theorem or averge kinetic energy is related to atomic electron density.

Since these two approaches 'give the same stopping power expressions, we may

say that plasma model can be local i zed by the equivalence of these two

approaches. But for low energy projectile, especially for light elements

which contain L shell electrons, this formula is too simple to describe

the stopping power due to various physical effects. First, one should take

r^-

'" •
	 24
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into account the transitions that are forbidden by Pauli's principle (for

the importance of this in the case of asymptotic stopping numbers see

	

Khandelwal [26]). There is a modification factor on 
n 

or n	 or	n
K	 L	 M

which depends on Z and also depends on the shell. The following tables 4

	

and 5 list the coefficients of 
q  

for different 
6  

(where e
	
	 is the

energy difference between ground state and lowest occupied state in units of

ZLeff2Ry/n2 for L shell n = 2) according to Walske for e L = 1 the

coefficient of n 
L
- 1 is 2.

Table 4. Coefficent of nL-1

eL 0.35 0.45 0.55 0.65 1

Coefficients

Of n
L - 1 1.5032 1.0756 1.9890 2.0000 2

,

Table 5. Coefficent of n K-1

e L 0.7 0.75 0.8 0.85 0.9

Coefficients

Of n
K-1 2.0662 2.0999 2.1196 2.1290 2.1309

E"_
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Second, at low energy we also need to consider high order expansion

terms which are not completely known. Waiske's expansion for the L shell

for the V3  nL-4 forms involves fitting.

Third, Brown and Walske ' s calculations are based on hydrogenic wave

functions, as Walske has pointed out, for Z<30 the results are not

accurate.

Fourth, as mentioned, Brown's model of upper limit of momentum transfer

was used and this involves an uncertain factor between 1 and 2. This is

because due to the nuclear recoiling, the real value should be between that

of Brown and Walske, and should depend on projectiles energy.

t Furthermore, there exists a screening effect on low energy projectiles

charge.	 It is easy for the element like	 Li to loose its valence electron,

when positive heavy ion projectile moves rather slow. 	 There is some chance

r^T
r that the projectile can capture the eletron.	 This will cause screening

effect on projectile which in turn will decrease the stopping power. 	 All

these complicated effects should be taken into account.

In formula (15)

CK ♦ CL	 _ 1	 1	 Z1

J,.

a a ^a

= Z {2 Linhard-Winther's Second term of L2 function times Z}

the factor 
Z 

is due to the definition of Z as 	 another Z	 in the

 bracket is mainly due to each electron's contribution to total shell

correction, 1 or	 1	 is full shell's shell correction, it looks like ^^'?	 1
K.	 nK	

n^

5
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1

these two	 Z	 factor cancel each other but takinq, into account all the above

effects the situation is not so simple.

As we know the quantity	 Z	 in the bracket of formula (15)	 is mainly

due to each electrons contribution to total shell correction but at least

the screening effect has a negative influence. 	 As	 is well known,	 Li's

first ionization potential is about 5 ev.	 It means only 5 ev additional

energy can cause	 Li	 to loose its valence electron. 	 Me anwh i 1 e, neon' s f i rst

ionization potential	 is about 20 ev.	 The ionization potential rises linear-

ly in	 Z	 between l ithi un and neon.	 It appears for	 Li	 screening effect

G is much more important than for Neon.	 At least for	 2 < Z < 10	 elements of

small	 Z	 have more influence on reducing the stopping power through screen-

ing than large	 Z.

r;
Formally, we absorb this effect into the bracket. 	 Now,	 in the bracket

r" we have two contradictor	 effects.	 The shell correction pro portional to	 Z,proY	 P

the screening effect is in the inverse direction. 	 In addition,	 there are

many other unclear effects which we have mentioned above. 	 Roughly now, we

have the following assumption; suppose these two contradictory effects
rx

roughly cancel each other also with other effects. 	 We may use a half full

shell nunber as an average instead of 	 Z	 in the bracket.

Thus,we obtain the expression for 	 L2:

r 2
L2	1 n	

2mv^	 - 1	 <T>	
for	 Z < 2

hw	 Z	 mv2
A P

(16)

2L2	_ In 
^2mv^ - 5	 <T>	

for 2 < Z < 10
hwp	 Z	 mv2

u
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Q^

P

where 
<T> 

1 (Lindhard-Winther's second term in L2 function)
mv2 2

As mentioned earlier the equivalance of the shell correction term from

Lindhard-Winther's theory and Bethe-Walske's theory actually gives somewhat

the explanation of the local plasma model. Furthermore, for real atoms we

also give the correction on Lindhard's theory. Also we can tell how far the

local plasma model can be applied to real situations. Lindhard and Winther

also used a parameter Y in both the first term and terms of L2 to

simplify the calculations we will show in the note at the end of this sec-

tion in detail.

Now (16) becomes

1L2 =lnY -	 31.5 1
1 	 for Z 4 2
Z lox	 Y

L2 = In Y - 5 31 ' S 1_	 _	 for 2 < Z < 10
Z lox	 Y

where X2 = 
2	

VF is the Fermi velocity and Y = 2mv
2

7r h VF	 hwp

Now we apply the Pine correction on L, i.e. use y Wp instead of W 

in	 L2 	as	 well
2

as in	 L 1 	or using	 Y = 2mv
	

instead of Y
2

=	 m in L
YIW hap

s function.

w Finally, we smoothly join	 L 1	 and	 L2	 thus obtaining L	 function by

the following manner.	 Extensive numerical	 Evaluations using a computer

28	 i
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program of the function L 1 and L2 for various values of the variable Y

revealed that in most useful cases there were found two roots Y1 and Y2

of the equation L 1 = L2 where Y, < Y2 . Furthermore, the slope M of

the function L2 for values of Y greater than Y2 was a'iways small. On

the other 'hand, the slope of L2 for Y values less than Y1 was very

steep. These observations, including the behavior of these functions (see

figure 1), led us to the following recipe to preserve the continuity consis-

tent with the physics of the situation

L = L2 when MY < L2

L2 = Max [L 1 , L2 ] when MY > L2

actually we have

L1 Y < Y1 ) ^_^,	 ,

L=
- L2 Y>Y1
^v

which was found to be convenient for the computer progranmi ng.

The functions	 L 1	 and L2	 are defined as follows
yK,

- 3	 3
n

L1
(X2	

Y Cl(X)
R	 f ;	 .

. 3,
r,

1+?X2 1-1X2
t

X
41	 f(

1 3
3jf where	 C, (X)	 (In ( ) -	 )

2(1- X 2 )2 X? 1 + ? X2
3 3

x i4

t 29



L2 = In 2mv
2 -	 <T>

hwp	
1 mv2
2

instead o;'

t

E

L2	
In Y _ N 31.5 1

_
E,	 Z	 lOX X

where N is the half full shell nunber

1	 for Z < 2
N=

5	 for 2<Z<10

NOTE: Lindliard and Winther used a parameter Y in both first and second

i

terms of the L2 function, i.e.

k	

L2 = In Y- 3 
1.5
 1
5x	 Y

2	 2

F

	

where Y = 2mv
	

and X2 = e

	

•	 hwp	 n h  F

	

tY	

i

•	
1

--1 where VF is the Fermi velocity VF = h ( 37t 2 n) 3 and w 2 = 4ne2n
m	 p	 m

K Ii n is the density of plasma.
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n

Applying this formula in the atomic or molecular scale, i.e. in the

local plasma model n is the electronic wave function square of ground

state. Thus Y and X are the function of density since we know the wave

function, L2 can be easily obtained. Now we will show that the second

term of L2

^^ ^ - is equal to 3
1.5 1

mv2	5X	 Y
2

the following formulae are used

X2 = e2	 definition of X
s	 whvF

_ 4ne2 n^p2	

m

x
2.l

M;

-_ -EF	 1 m VF2	 h2 (3,r 2 n)
2	 2m

C^

<T> = 3 m VF2
10

(17.1)

(17.2)

(17.3)

(17.4)

From (17.3) we have ^n - m— m- VF VF^rh	 3h
w

from (17.2) we have W2	
4ne	 n

m

F-	 #

WI

r
32
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2mv2 2mv2 _ V ̂ 2m VFY 

hw	
A V 2 

Y F	
A	

(v )2

p	 F	 F

1,^ = Ce
X

from (17.1) we have

3i	
4

thus

`a

r

I^
I^
V^

URIGINAL PA. ,  E ti

thus

	 OF POOR QUALITY

hw, -- 4n eh m	 ; r	
V ;VF	 = A VV

nh 	 3h F 	 F

{	 where A - 2 me	 1

ith

Y -	 (V )2~
X VF

a
since from (17.4) we know <T> = 1_3 m VF	 finally we have	 kp

1.53 	 1L2 	 l n Y-
hx	 Y	

a

a'^

s +"
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CALCULATION OF MOLECULAR STOPPING POWER

In this section, we perform calculations on the molecular stopping

power of H2 , He, Ni 02 and water vapor for wide proton projectile energy

regions (for K2 , He, 100 Kev - 2.5 Mev, 40 Kev - 2.5 Mev else) . Comparisons

of the experimental data are indicated in tables 6 to 11, (see reference

[27] and (28]).

The basic formula for the stopping power of local plasma is as follows:

is	 t
y

	

- d E	 4n z2 e`' N	 2mv 2
f p (r) In (	 p ) d3r

	

dx	 mv p2 	Yhwp(r)

To extend the formula to low energy regions, it is only necessary to replace

2mv 2
in (	 p ) by L function, which we have established in the section en-

Yhwp(r)

titled "Stopping Number Function."

Now we are interested in molecular stopping power. The charge density

+	 in the integral should be the electron density of molecules. As we mention-

ed in the section titled "Stopping Number Function," the Gordon-Kim model

+	 is a rough model of molecular electron density. They assured that no

arrangement or distortion of the separate atomic density takes place when

the atoms are brought together. The total electron density of two

interacting atoms is, therefore, taken simplyas the sun of the two atomic

densities.

s

h

P (r )	 PAr) + P8 (r - R12 )	 (18)
molecule

rll
a

i

4• aA d

r x

p p	 '

.^ a

t#+

whereX12 is the i nternuc 1 ear distance.
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Let us use H2 as an example to explain how to apply formula (18) .

The ground state wave function of the hydrogen atom is 1 e- r. The elec-
7r

tron density of Hydrogen atom is 1 e'2r . According to (18)
7r

p'"*a

2

P	 = 1 o-2r + 1 e -(2 W +R12 -2rR12 cose)	 .

H2 n	 n

For other atoms the atomic wave functions are obtained by Clementi,	 Roetti

[29] (published in atomic data and nuclear data) . 	 They used Roothan-

Hartree -Fock method to calculate basic function and their coefficients for

ground and certain excited states of neutral and ionic atoms for	 Z454.	 For

r- molr-;:ules which contain more than two atoms the model can be extended as

follows

p molecule - PA (F)
d	 P  (r - RBA ) + P C (F - RAC) (19)

Here we present the calculation of water vapor which contains three atoms.

i
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The angle between two OH bounds is about 105 0 . It should be calculated by

formula (19), but for simplicity in this section we neglected the H-H over-

lap simply as follows

pH2O = PO (F)
+ 2 p H (r - OH)

Also we need to consider partial ionic bond effect. Many compounds exhibit

partial ionic bond rather than pure covalent bond. Paul ing defined partial

ionic fraction [30] as the measured dipole moment divided by ideal dipole

moment.	 Consider,	 for example, the compound,	 HCi. The distance between two

nuclei	 is	 1.275A',	 the partial ionic fraction is	 p = u -x 100%, p ° = e x Ro
e	 r

4.80 x 1.275 = 6.12 D, 	 but the actual measured dipole moment u° = 1.03 D.

a Hence, p = 1'03 x 100% = 17%. H2 O	 is also partial ionic bonded compound.
6.12

The actual measured dipoment is p	 = 1.940 the ideal dipoment	 u°	 a Ro	 =

4.8 x 0.958 D =	 4.5980	 the partial ionic fraction p = p	 = 0.42.	 The
^^ u

mole-cule's electron density of partial ionic bonded compounds can be

expressed as follows

pmolecule - pA (r)	 + p B 	 (r - RAB)
r•

with	 P+= (1- P) p(r	 + P P+ {r)

r

The case p = 1 (pure ionic bond) physically corresponds to moving one

electron from one atom to another atom. Now for one atom we use wave

7`

r•c a

^A

F`

f

P ^ y

C^ r.

E
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H-H H-0 N-N 0-0

R(A) 0.74 0.958 1.094 1.207

F

Rf
f^

^'	 k
Y

.w
Yfk +

At
i

function of positive ion, for another atom we use wave function of negative

ion, For the case p =0, that is the pure covalent bond, we still use the

neutral atom's wave function. 1i21 02 , N2 , are all pure covalent bond

molecules.

Water vapor is a partial ionic bonded compound. The distances between

nuclei are listed in table 6.

Table 6.

4`> N
C

l j
1	 t

b iP'	 C•

Table 7 lists the results of this paper together with Andersen and Ziegler
r P,I

[31], curve fitted results and three sets of experimental data for	 H2
n

molecules. 	 Good agreement within 20 percent is found with experimental data

from proton energy 100 Kev.	 - 2.5 Mev.	 Calculatioiis from the equations

established by Bonderup [20] were also undertaken by extending them to
M

r molecular system.	 Table 7 lists these values for 	 H2	 molecules in the last

column.	 These differ from our results in the low energy regions. 	 Table 8,.

lists the same physical	 quantities for helium gas.	 The same trend is ^'

observed as	 in the case of the	 H2	molecule.:..°
e= _^

Table 9 lists the results of this model together with Andersen-Zeigler

and three sets of experimental data from proton energy 40 Kev - 2.5 Mev for 
r

'l

if

37 1it

+Dill
E
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Gi T7

N2 molecule. Table 10 lists the same physical quantities for 02 . Table 11

lists the results of this model together with Reynolds et al. experimental

data for water vapor all these tables show theoretical results of this

model are in good agreement with experimental data.
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Theoretical
Value of

Curve
Fitted
Values
Andersen

Best Available
EXPERIMENTAL RESULTS

Reynolds
the Present and et al. Philips Langley

E(keV) Paper Ziegler[31] [32] [36] [33]

40 17.20 16 17.1 t2.6 14.1

50 17.81 16.9 17.8 t2.6 14.8

60 18.24 17.3 18.2 ±2.6 15

70 18.48 17.8 18.5 +2.6 14.9

80 18.41 17.9 18.5 ±2.6

90 18.25±2.6

100 17.79 17.7 17.9 ±2.6

200 13.26 14.1 14.7 ±2.6

300 10.85 11.2 11.2 ±1.7

400 9.24 9.3 9.34±1.7

500 8.10 8.1 8.08±1.7

600 7.25 7.2 7.21±1.7

700 6.7

800 6.0

900 5.65

1037 5.20 4.78

2074

2591 2.71 2.72

a

alb p,_

`.yyf4 Y;:..

L

Table 9.	 Proton stopping gross section values (in units of 10- 15 eV cm2)
or more exactly _ stopping cross section per molecule

(10- 150-cm2 ) of2N2 gas

F
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,y
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Table 10. Proton stopping gross section per atom (in units of 10- 15 eV cm2)
or more exactly .:L stopping cross section per molecule
(10'15 eV'cm2 ) of 0. gas

Theoretical
Value of

Curve
Fitted
Values
Andersen

Best Available
EXPERIMENTAL RESULTS

Reynolds
the Present and et al Philips Langley

E(keV) Paper Ziegler [31] [32] [36] [33]

40 15.89 14.6 15.2 t2.6 12.5

50 16.52 15.5 16.4 ±2.6

60 16.99 16.2 16.9 +2.6 14.2

70 17.29 16.7 17.15±2.6 13.8

80 17.48 17 17.25±2.6 13.8

90 17.1 17.25±2.6

100 17.43 17.0 17.17±2.6

200 14.36 14.6 14.7 ±2.6

300 11.84 11.9 11.99±1.7

400 10.14 10 9.76±1.:

500 8.92 8.8 8.84±1.7

600 7.99 7.9 7.91±1.7

700 7.0

800 6.5

900 6

1037 5.64 5.25

2074

2591 2.97 2.85
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E (keV)

Theoretical
Values of
Present Report

Reynolds
et al.	 [32]

40 28.81 25.0 ± 2.6

50 28.81 26.1 ± 2.6

60 28.59 26.9 ± 2.6

70 28.22 27.5 ± 2.6

80 27.77 27.6 ± 2.6

90 28.28 27.5 ± 2.6

100 26.77 27.3 + 2.6

200 21.04 22.0 ± 1.7

300 17.06 17.9 ± 1.7

400 14.43 15.0 ± 1.7

500 12.59 13.0 ± 1.7

600 11.20

700 10.13

800 9.28

900 8.56

1000 7.97

1

Y n

A
p a ,

!E

r i

r

Table. 11. Proton stopping cross section per molecule (10- 15 eV-cm2)

of KZ 0 vapor

r.
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MOLECULAR EFFECT OF STOPPINO POWER

Deviations from Bragg 0 s rule due to chemical structure have been

recently systematically studied by several experimenters. Some interesting

conclusions were summarized from these experiments. Now, we have already

obtained stopping cross section of molecules by using method established in

the sections titled "Stopping Number Function" and "Calculation of Molecular

Stopping Power." We can also easily obtain the atomic stopping cross sec-

tion by calculating the difference of these two quantities. In this way we

can obtain the deviation from Bragg's rule theoretically. A discussion,

based on this evaluation and on conclusion from the experimental side, will

be presented in this section.

Discussion on deviation from Bragg's rule due to chemical structure

Jn 1905, Bragg andof stopping power of molecules is of great interest.

Kleemman first proposed the Bragg's rule [5]. It states that the stopping

power (or stopping cross section) of a molecular substance is the additive

sun of the atomic stopping powers multiplied by the nLinber of times each

atorn occurs in the molecule. Bragg's rule has been shown by Thompson [38],

i	

I

V. .	 ^: for very high velocity proton to be valid within about 1%. Wilson and his

co-workers [39], [40], [41], [42] systematically studied the molecular

effect on mean excitation energy. Considerable deviations from Bragg's rule

on mean excitation energy were found. This is not contradictory to Thompson

because due to Bethe's formula

r
i ,
	

1^
C,	 4ZdE	 41r e	 2mV2

N ln
2dx	 mv	 I
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even though there may be considerable difference in mean excitation energy

I, for very high velocity case the percentage deviation on stopping power

can still be very small.

For low energy projectile the situation is more complex. Many authors

found no molecular effect on stopping power. 	 Reynolds et al. [32], and

Park and Zimmerman [35], found there existed deviation from Bragg's rule.

Since 1971, Baylor group did several experiments and thus systematically

studied deviation from Bragg's rule due to chemical structure, [6], [7], and

[8]. They used a particle as the projectile from 300 keV to 2 Me V and

many gaseous compounds as targets in their experiments. The following

conclusion have been given:

1. Physical effects appear to have caused deviation from Bragg's rule.
The stopping power of H2 O vapor obtained by Reynolds, et al. [32],
was found to be an average 11% higher than 	 that of D2 0 ice
obtained by Wenzel and Waling for proton of 30-600 keV [43].

2.	 Chemical binding effects are more likely to cause departure from
Bragg's rule for low velocity projectile.

3.	 Bourland and Power [7] said Bragg's rule applies to the gaseous
compounds which contain single'and double bonded molecules.	 Bragg
rule does not apply to compounds containing triple bonds.	 For	 a
particles of energy 0.3 - 2 Mev, the deviation of Bragg's rule are
found as much as 12.8%.	 Especially they indicated that molecular
hydrogen obeys Bragg's rule.	 One year later,	 Power et al.	 [6]

4`.wondered about their previous conclusion.	 They said "this
observation greatly weakens the assumption that a physical state
effect is possibly the cause of deviation from Bragg's rule and may <'	 '
even imply that the problem is not due to a difference in e(C)
(stopping cross section)	 under certain circumstances but rather
than the atomic stopping cross section e(H) may be considerably
different than one-half the	 molecular stopping cross section e (H2).^
as has usually been assumed in the past. 	 In 1974 Lodhi and Power
[8] gave a more careful conclusion.	 They said that single bonded
compounds involving C, H, 	 F and Br have been shown to have molecu-
lar stopping cross sections that are predictable with errors of a
very few percent by using vapor deposited solid carbon e(C)	 along
with an e(H) that is common to eleven compounds. 	 It appears that
there exists no unique atomic stoppin gg power for carbon and hydro-
gen which satisfies Bragg's rule for double bond compounds and that
due consideration must be given to molecular structure when pre-

45



dicting molecular stopping power from atomic stopping power for
those compounds.

It appears they corrected 'their previous conclusion that the double

bonded compounds have no deviation from Bragg's rule. However, their main

difficulties lie in the fact that it is very hard to determine the atomic
S

stopping power from experimental data.

Discussion on Deviation from Bragg's Rule, Due to
Chemical Structure from Theoretical Model.

In the above section, we found the Baylor group met difficulties with

determining the atomic stopping cross section from experiments. Actually,

it is very hard to obtain atomic state hydrogen. However, fron the local

C

r	 plasma model it is quite easy to calculate the atomic Cross section, since

atonic electron ground wave functions are employed in obtaining the density

in local plasma model.

Table 11, 12, 13 show the calculated atomic and molecular stopping

cross section of 02 , N2 , H2 , respectively. The percentage deviation from

Bragg' s rul a are also 1 isted.
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E(keV) 40 100 200 300 500 1037 100000

S(atomic^
eV x 10- 15 cm2 19.33 18.57 14.52 11.56 8.53 5.30 0.1340

atom

$(molecular)

2 eV x 10- 1 5 cm2 17.70 17.79 13.26 10.55 8.10 5.20 0.1'x`19
molecule

deviation 4% 4.2% 7.4% 6.1% 5% 1.9% 1.3%'

x

i

r.

r

x

Oft

	

. %L	 U+

	

Ml-	
k

Table 11. Atomic and molecular stopping cross section and deviation from
Bragg' s rule of 02

E(keV) 40 100 200 300 ,500 1037 100000

S(atomic)
1 2.15eV + 15- 15 cm2 17.44 17.48 14.65 9.1 5.72 0.1429

atom

J(mol ecul arI
eV x 10' 1	 2 15.$9 17.43 14.36 11.84 8.92 5.64 0.1476

2 molecule

8.9X 0.3x 2% 2.6% 2% 2.4% 1.1%deviation

.	 t

Table 12. Atomic and molecule stopping cross section and deviation from
Br agg' s rule of N.

µ

^t	 3

°

.
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E(keV) 100 200 300 500 800 1037 2591

S(2xatomic)

2xeVx10-15 cm2 12.7 8.13 6.1 4.17 2.89 2.36 1.11

atom

S(molecule)

eVx10- 15 an2 11.43 7.53 5.71 3.93 2.75 2.24 1.%

molecule

deviation 10% 7.4% 6.4% 5.8% 4.8% 5.1% 3.6%

p

t

fy, ^f

_	 3

x. 
r

4
h

Table 13. Atomic and molecular stopping cross section and deviation from
Bragg ' s rule of H2

From Table 11, 12, 13 the following facts are found:

1. When the projectile's velocity becomes extremely large, the devia-
t.Ion from Bragg s rule almost vanishes for N,, 0 2 gases. When the
protons energy increased to 100 Mev, the deviation from Bragg's

	

rule decreased to almost 1%. This result agrees with Thomson's 	 e.{
predictions.,

4;,a
2. When the protons velocity becomes comparable to the atomic electron 	 ,;$	 a

velocity (corresponding to proton energy 40-100 keV) there may••
exist considerable deviations from Bragg 's rule.!.'

N ye  ia

	

_	 ;	 t
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3. Deviations from Bragg's rule are also found to depend on chemical
structure of molecule. As is well known in chemistry,02's
structure is a little bit fuzzy. From bond energy point of view,

02 is still a double bonded molecule. Meanwhile N2 is 100% triple
bonded molecule, H2 is a single bonded molecule. It is also
noticed that the maximum deviation for 0^, N2 and Hz above 100 Kev
proton energy are about 2.6%, 7.4% and 10%, respectively. Mean-

while the internuclear distance for 0z, N2, and H2 are 1.20A',
1.094A and 0.74A , respectively.

It appears, the smaller the internuclear distance the more the devia-

tion will be. When Gordon-Kim model is employed, the smaller the internu-

clear distance always means that there is more overlap of electron clouds.

Thus more overlap causes more deviation from Bragg's rule. In this model,

the molecular binding effects are also determined by these overlap of

electron clouds. However, Gordon-Kiwi model is a very simple model for

diatomic molecules. The internuclear distance is the only relevant

parameter but the most important information about the molecular effect is

contained in this parameter. There is a very strong relationship between

the bond energy and the distance between the nuclei. The stronger the bond
3 	 .

energy, the shorter the distance will be. It is interesting to note that

the single bonded, double bonded and triple bonded carbon molecules have

inter-nuclear distances equal to 2.94, 2.52, and 2.24 in Bohr units
LTf

respectively. It means that the triple bonded carbon has more overlap than

the single bonded carbon. 	 We may thus expect that the triple bond carbon,$

will have more deviation from Bragg's rule than the single bonded carbon.
f'

It	 is expected from the above statement that for the same compounds the

ff	
1

r	 S

^	 #

triple bonded molecules most likely have more deviation from Bragg 's rule`.:

than single bonded molecules but it does not mean that we agree with the

f= statement that the single bonded molecules have no deviation from Bragg's
I
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Actually from our calculation, it was found that H2 had considerable

deviation from Bragg's rule at low projectiles energy. (10% for 100 Kev pro-

ton energy) due to its small internuclear distance 1.074A' and relatively

large overlap of electron cloud. It was also noticed that all these devia-

tions due to molecular effect always decreased the stopping power.

One of the reasons to understand the above fact is that the binding

effects always weaken momentum transfer and cause the upper limit of
	

k

momentum transfer to be less than 2mv and thus reduce the stopping power.

a

f

ot

Another reason is due to the shell correction term. As we know the first

shell correction term is proportion to <T>/mv2 for bond states <T>

I<E>) . Thus, more binding effect increased the kinetic energies thus de-

Cq
	

^' creasing of stopping power.
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CONCLUSION

We have established a modified local plasma model which in conjunction

with the Gordon-Kim model affords a method to calculate molecular stopping

power even at low projectile energy. By using this model the main conclu-

sion on deviation from Bragg's rule, summarized by Baylor group's experi-

ments, can be understood. Some ambiguity on deviation from Bragg's rule of

92 is now understood under the present model. The assumption that e(H)
1	 ^

e(H2 ), is not correct from overlap point of view (where a is the	 i

stopping cross section). The only conclusion by using simple Gordon-Kim

model is that the more percentage overlap caused more deviations. In other

F	 words, the stronger the binding effect the more deviation from the Bragg's

rule will be. It appears that for the same compounds, triple bonded

molecules most likely caused more deviation than the single bonded mole-
'Irk,
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APPENDIX

THE EQUIPARTITION RULE AND NUCLEAR MOMENTUM RECOILING

A semi-classical three body collision model has been established to

estimate the upper limit  of total momentum transfer of proton incident on

hydrogen atoms. Numerical results revealed that the equipartition rule in

shell correction deserves more careful study.

We have mentioned in the section titled "Stopping Number Function" that
r

to apply a correction on the first term of shell correction we used Brown's

results. Specifically the term <T>/mv 2 was used instead of the term
	 r

<TV mv2 of plasma model.
	 a

j
In their paper "Stopping Power of Electron Gas and Equipartition Rule"

i
!r.

Lindhard and Winther [15] mentioned that their result of first term of shell

correction was in agreement with Walske's result [22]. As is known,

Walske's shell correction term is just twice that of Brown [21]. This

result leads one to believe the existence of an equipartition rule in case

of shell corrections. Lindhard and Winther noticed this, and surmised that

there was a correspond-ing equipartition rule in the plasma model. This

implies that the plasma resonance excitation and the close collision eachW_.

had equal contribution to stopping power. It appears that plasma model
K,

gives exactly he same results asy ^	 quantum perturbation theory. Lindhard and

rte.

Winther emphasized this fact as a success of local plasma model. Fano also5..

mentioned this fact in his paper "Penetration of Proton a Particles and
E .	 .

Mesons" [44]. He used the results of plasma model to support the existence

-.s of the equipartition rule in shell corrections.

The so called equipartition rule has its origin in Bethe's stopping
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power formalism. Bethe divided the stopping power of fast charged particles

into two parts, that due to the distant collision and the close collision.

There was also found to have considerable contribution to stopping power for

those particles which move not so fast. Thus besides the logarithm term,

the so called shell correction terms should also be included in calculating

the contributions to stopping power.

Brown had calculated the stopping number function and shell correction

of K shell electron by using the h ydrogenic wave functions. The expres -

sion for stopping number is as follows

	

BK	 j Emax EdE j Qmax d4 
(Fn(Q)12

Emi n	 Qmi n	 Q2

:z where Q = (P - P')2 /2m P and P' being the momenta of incident particle

before and after collision 1F n (Q)1 2 is the form factor. Brown took the

 simple two body collision model, namely particles colliding with a free

electron to estimate the upper limit of momentum and energy transfer. Thus

he obtained the maximum momentum transfer npmax = 2iv. Brown obtained an

asymptotic expression for stopping power of K electron as 8 K =2 in n  +

'	 2
2. 57861 - 1 where nK = 1 mv2 i n units of Zeff Ry i s the first term of

^^	 nK	 2	 K

shell correction. Meanwhile Walske, took both the upper limit of momentum

transfer and energy transfer as infinity and obtained the stopping number

f`	 functions

w

Bi (en, n o)	
j`°	

HE j 	 dQ 1Fw
'	 Win= 9i/ni2	 W2 ni 02	 i

}
a

,E
µ

(Q)12
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where i = K, L, M denotes the different shell, ni = mv2 /2 in units of

Z2eff Ry, 0  is the observed ionization potential of ith shell divided by

"ideal ionization potential."

Walske also defined the shell correction term C i ( e i , n i ) as follows

S. (e., n.) = S i (B.) in n. + T i (e.) - C.(e., n.) and he thus obtained

asymptotic formula B 	 and BL both for K and L shell. The correct

coel,,*ficient of 1/n K2 is taken from Khandelwal ' s paper [25].

i
8  -= 2 in n K + 2.57861 - 2 i1K 1 _ (25) r^ K -2

-	 3

4

F B
L = 8 In n L + 25.5766 - 2n L1 (to order n c1)

^`	 n

Notice that the first shell correction terms are 2n Kl or 2n Ll . The K-

`	 shell tern 2 n R1 thus is twice that of Brown's term nKl.

In other words, shell correction can also be divided into two high and

low momentun transfer parts. Such parts each contributes equally to

stopping power. Indeed, Walske explicitly divided shell correction into two

parts.

C (e, TO = C1 (e, TO + C2( e , n)

where C1 and C2 are low and high momentum transfer parts respectively.

Furthermore, he also showed that C1 and C2 are equal to the order of ni l

t	 both for K and L shells and to order 1/n K2 for K-shell. Walske's
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results are only limited to	 K	 and	 L	 shell electrons of hydrogenic atoms.

But Fano made an assumption that the conclusion	 C 1	= C2	can be generalized

to any shell of any atom.	 This is so called the equipartition rule of shell

correction.	 All these conclusions are based on Walske's assumption that the

upper limits of the momentum transfer and the energy transfer are infinity.

The question is whether the assumption is true or not.

Brown took the upper limit of momentum transfer as 	 2mv	 and this is

based on the assumption that the electron initially is free.	 Two factors

are neglected in this assumption.	 First Brown neglected the binding ef fect y

of the electron. 	 Second, he also neglected the nuclear momentum recoiling.
i

c

It	 is obvious that if the nuclear motion is involved then due to its huge

^- mans, the total momentum transfer may be greatly increased. 	 But by how

F much?	 Is taking infinity a good approximation for the upper limit of mo-
i

mentua transfer?	 It appears the answer should be dependent on the velocity

of projectile.	 For instance, if the projectile moves extremely slow then

the nucleus may obtain sufficiently large momentum transfer.	 Otherwise due`s
k

to the short interaction time, nuclear momentum could be small and the upper

limit of total momentum transfer will not differ too much from	 2mv.p`

In this appendix, we estimate the upper limit of momentum transfer by

the projectile to a hydrogen atom by establishing a semi-classical three

# body collision rm=:del.	 For protons energy over 50 Kev a fitting formula from
r--^

f
numerical results was obtained: 	 (See for the general results later in this

` appendix)
}

?'

W is
^.

l	

f

AP	 =2mV l
max	 a p.

CL
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where c = (1 + 8.9 (vo ) s ) (1 + 1-(^O)2)
VpVp

where V 	 is the velocity of proton and V 	 is the Bohr velocity. Numeri-

cal results of C of various proton energies are listed in table 14.

Table 14.

E(keV) 50 75 100 200 400 1600

C 2.20 1.43 1.19 1.01 0.991 0.996

From the above formula and the table we see that for high energy ro

	

^. 	 9Y	 -p - -

jectiles Brown's assumption is correct. The values of C slightly less

than unity is due to •binding effect but for low energy proton the factor of

nuclear momentum play a more important rule. There is a considerable

e	t	 correction to Brown's results. But even at 50 Kev protons energy the

numerical result of y is only 2.2, still quite different from Walske's

assumption of infinity. It is true that when protons energy becomes

smaller, then the correctiop. factor C is expected to increase rapidly, but
r

then the expansion of stopping number function B i should involve more

terms than just the term n i - 1 . However Fano's assumption that C1 - C2 or

quipartition rule of shell correction, deserves a careful study.
W

Nuclear Momentun Recoiling

In this section first we shall review the conservation laws and the

resulting physical quantities when the collision is assumed to be taking
f.-

i
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place between two bodies only. Later, three body collision problems are

handled numerically in a semi-classical manner. Nuclear momentum recoiling
k

effect is estimated in the relatively low energy region of Bethe stopping

power.

Semi-Classical Formulation of Three Body Problen for Relatively
Low Energy Stopping Power

Estimating of the Quantities Q(min) and Q(max) Two Body Collision.

Let us first consider the energy regions such that we can always ne-

glect the nuclear recoiling energy, i.e. we can express energy conservation

1 aw as

is

Y

(En - E o ) = h2 (K2-K 12) /2Mp

	

z;	 where En and Eo are the eigen energy values of final state of electron
4..

	

.	 and initial state of electron, hK and hK' are the initial and final momen-

tun of projectile.

We know that in lab. coordinates the momentun changes of projectile are

much smal ler than the momentum of projectile itself, i .e. oK<<K or a«1 so,
r'

we have (En -E o ) = h2 ( K 2 -K 2 I )/2M p 	h2 K(K-K I )/MP =hVp (K-K' )
L-

since a is small

Q2 =K2 4X 12 IKK' co s( e )=(K-K' )2 +(K8 )2.

K
t

FW

Thus Q(min) = (E n -E o )/h VP

P.

F-

1

q

w

Q = (E n -E 0AV P )2 +(K
e 

)2
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This Q(min) estimation is justified unless one deals with the extremely low

energy case for hyd rogen atom targets when proton's energy is lower than 10

key (Andersen and Ziegler) for which we need to consider nuclear recoiling

energy tem. Now let us estimate Q(max) term very carefully. This upper

limit estimation will involve a correction to Bethe's theory.

We use Landau' s treatment of Bethe l s theory for estimating the upper

limit of momentum transfer. Essentially it neglects the nuclear recoiling

displacement and momentun. Hence it becomes simply a two body collision.

In this model, the projectile collides with a free electron.

write . down the momentun and energy conservation laws as,

K,2 K2+AK2-2KAKco0

K2 -K o2

A E
2M	 f,

P

AK = Q

where Q is the momentum of electron (in our case projectile momentum loss

is entirely transferred to the electron) m is the mass of electron. From

above conservation laws, we have

S-

The projectile's initial momentum is hK

and the f i nal momentun is hK I . Al I the

momentum changes of projectile are

transferred to the electron which is free in its initial state hend-t4, we

P^



2KAKcoO -e K? _ Q
2M	 2m

2KQcoso 
p 

( 1 + .1 ) 	22
M 	 m 

M 
	 m

or Ofinax) = 2 mV 

It is a very simple model, but it works at high energy. The main physical

reason is that the projectile moves too fast to cause any significant

displacement of the nucleus. At relatively low energy due to long

interaction time, we need consider the nuclear recoiling momentum to correct

the upper limit i.e. Q(max)

	

-^	 t
r,

Semi-Cl assical Three Body Formul ation
r

A model essentially based on classical three bod y problem was estab-

lished. Consider a proton which collides with a hydrogen atom. The

electron of the atom was initially assumed to be in its ground state. Some-

what semi-auantun conditions are involved in our model, besides usual

classical columb interaction. Now let us see how the nuclear recoiling

	

'	 momentun influences the upper limit.

AK	 eK=K'-K APe+APn

K

	

^.	 where4Pe and bPn are the difference of the electron momentun and the

nuclear momentum before and after collision. Now the projectiles momentun 	 ti
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not only can be transferred to the electron but also can be transferred to

the nucleus. Furthermore as stated before we assume that the electron is in

the ground state initially. Now let us set ± he initial momentum of nucleus

to be zero i.e., APn Z Pn o Thus we have nK=e Pe +pn

(eP )2 + 2 e n	 nP • P + (P )2
AK _ ^P	

a
el	

P2	
=(peg(= + n)

e

(AP 
)2 

+ 2oP . P + (P )2r.	 e	 e n	 nwhere 1 + n =	 -------
R	 p2

e

We again write down the conservation laws;
3

Ki2 = K2 + oK2 - 2KAK coso

15-	 K2
X.:

1,.+E	 W2 + Pe2 + Pn2 +V
2M P 	2MP 2m	 2Mn	 n

AK	 IP e 1 (1 + n)^.
r,

-^ For maximum momentum transfer cos(0) = 1, as before. From (21a) we have

^x K2 -K2 1 /2M p = (2 K& K - ,& K2  ) /2Mp

from (21a) , (21b) , (21c)

we h ave

"n

t'S•

2	 2	 2
M V I P	 (1 + n)	 Pe (I. + n)2 = P

	
P n - (Eo

e +
	 - V

P e	 2M	 2m	 2M n 	n

(20)

(21 a)

(216)

(21 c)

m
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V  I P e I (1 + n) + (E o - Vn ) = 
2 e

{	 1M 2+	 1 + 1 Pn?j

	

P	 m 
Mn 
e

= 1 p2 a
2 e

z
where a	 (1+n )2 + 1 + 1	 Pn

Mp	
m	 Nn Pe

	

or P 2 _ 2 VpPe(1 +n) 	
2(Vn-Eo)e	 a	 + a^ ---- = 0

V (1" )	 (V -E )a
Pe = p a.{ 1+ 1- -	 (22)

2 V2 (1+n)

	

V (1+n )2	 (V -E )a	r. o^max = pe (""n)	 p a _	 (1 + 1-	 n °	 )	 (23)
Vp (I +n )2

2

For high energy case Vp»V0 and thus there is no nuclear recoiling

r

hence AK max2Vpm

ar► 1 /m, n+0 (Vn-E0)a/ 1 Vp (1+n )2+0
2

Therefore, for relatively low energy case, we have two corrections; one is

x from nuclear recoiling momentum, and another correction is from the initial
F

N

energy of electron. For most cases the first correction is more 
important.4}
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From the formula for & max , we can see 
Almax 

depends on l+n or depends

on nuclear recoiling momentum P  which extends the upper limit and will

cause an additional stopping power.

	eP 2 + 2eP P	 P2
In formul a 1+ n	 e	 e n+ n	 (24)

P2
e

All these ePe , Pn , and Pe are numerical results of three body problem.

Now let us establish fundamental equations.

-^e

'rl2	 e2

1 "y
x

r23

n	 we denote projectile by 1, electron by

w
2, and nucleus by 3.

For simplifying the calculations we established a two dimension model.

It is not a bad approach because we are interested in nuclear recoiling

	

e	 effects' in which the main contribution is due to the coluiib interactions

	

zl 	 between projectile and nucleus. This is partly due to the symmetry and

partly due to our interest in obtaining average values.

Equations of motion for projectiles are as follows:

e2 Y -Y2 	 e2 (Y1 -Y3
M Y1 = -	 r3	 +	

r3
12	 13

F

..	 e2 X -X t	 e2 X -X
M X1 =	 r3	 -	 r3

	

All	 n.
	 12	 13



Y3 1	 = 0
t=to

Y30
lt=to=

y 3

t

ORIGINAL
OF POOR QUAUTY

Y1	 = b
t=to	 1 t=t o

X 1 	= 4a,3	 X1	 = Vp
t=to	 t=to

Where M is the mass of projectile which in our case is a proton. We took

the integration time as projectile moved from -4ao to 4ao for the standard

gas state given the average distances between molecules are about the order

of 10A and b i s the impact parameter.

For t ype electron we have the following equations:

e2 
( Y1 42 }	 e2 (Y2 43

M Y2
r3	 r3

12	 23
t Y°

	

..	 e4 (X3 -X2)	 e` V2 -X I )

	

mX2	 -
e	 r3	 r3

23	 12

Y2	 = s i r-,^	 Y2 =	 Vo s i r^

	

lt=to	 t= to

X2	 = -cOSO X2 =	 Vo cosoI

	

t=t0 	 t=to

where 0 is the initial phase of electron orbit

Equations of motion of nucleus are:

	

..	 e2 (Y2 -Y3	 e2 {Y1 43
Mn Y3

r3	 r3
r-'	 23	 13

e2 (X3 -X2	 e2 (X3 -X1

	

MnX3	 r3	 r3y,.	 23	 13

s .

c
F°	 !f

tt

X3 It= to =0
	 X3 

1	
=0

;'V—co
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As is well known numerically high order differential equations can be reduc-

ed to a first order equation such as:

Y(m)sf(x,Y9Y'.Y ...... y(m-1))

Let Y=Y 1 , Y' =Y2 , Y"' =Y3,0 ... Y (m-1) =Y m	 then this will reduce to

. 	 Y 1 =Y2

Y2 '=Y3

f^
R	 ^

Ym'=f(x,Yi,Y2,...Ym)

So our six second order differential equations are reduced to twelve
ti M

`	 :i first order equations. The electron is assumed initially to be in the first

Bohr orbit. Since we took laboratory coordinates the nucleus is initially

I

at rest in the position of origin. We emphasize here, the difference from

the usual treatment. Here we took the impact parameter b as the vertical

distance from the projectile to the nuclei's initial	 position and not the

vertical distance from the projectile to the electrons initial	 position,	 as

' is usually done.	 To apply classical mechanics to the microscale system, the

most serious difficulty is that the electron can eventually drop into

positive ions columb potential	 well. It also caused numerical difficulties

in practice because we need infinitesimal steps to keep acceptable

accuracy.

{	 To prevent this difficulty it looks as though we need to introduce

somewhat semi-quantum condition. In 1951 David Bohm suggested aninterrup-
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tion of quantum theory in terms of "hidden variables." [45] Bo hm proved

that quantum mechanics can be explained as some modification t6 classical

mechanics. Schordinger's equation can be expressed as:

z —	z V2

dt 2 	2m R

Where R is the real part of wave function or R 2	 I^(r) I2

So the equation of motion for quantum mechanics can be expressed as us-

ing classical potential plus a quantum mechanical potential which is correc-

tion to classical theory.

Following Bohm we got some hint that this semi-quantum mechanics treat-

ment prevents the electron from dropping into the nucleus. If given an

additional semi-quantun potential then we will have an additional force to

r.^ balance the usual columb force.

l For r<<ao this force will be greater than columb force. It will pre-

vent electron dropping into the nucleus. For r>ao, this force will

vanish. In some sense this additional potential gives explanation of first
ks

Bohr orbit. The above discussion is for` the bound state. For the

scattering state the electron can approach the nucleus. Thus, we will

establish a potential somewhat like Fermi distribution which depends on the

energy of the electron

V	 -	 h2	 (e -1 o +1)	
(25)

ed	 2mR2 (e	 +1)OE +1 )

K^

Figure 2 gives the graphics of this potential for EX VedrO, and for E<-1

f^

.	

Al
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h

2
Ved

h	
or we may say for scattering state our model is a classical

2mR2
model but for bound :%tate we have an additional term somewhat semi -quantun

term.

We use the expression (25) rather than a potential like

	

_ h2	 E <0Ved	
2mR2

Ved = 0	 DO

merely due to the reason that we need a continuous potential to obey the

conservation law accurately. We have some freedom to choose e- 10 or a-12

or e-a in the terms of Ved . The bigger the number we choose in

exponential terms the sharper the curve obtained. But as mentioned too

sharp a value will cause energy or momentum conservation .problems.

4	 We calculated these recoiling momenta and averaged them over phase of

the electron orbit and then took the average over impact parameter b. Here

as we mentioned earlier, b is the vertical distance from projectile to the

initial position of the nucleus. From (23) we have the maximum momentum

transfer

AK	 = V (1+n )2 (1 + 1- (V
n -E o)a ) _
	 2m V

r	 p	 p¢	 max	 1 Vp2 (l +n )2

2

In the stopping number formula instead of 2m V
P
 we have 2m VP9 hence we

finally obtained the new stopping number formula

2m V 29

L = 1n (	 p )

n	 10

r

i

}

R	 i

1



In this two dimension model, there are two parameters, impact parameter b

and initial phase. Numerically we calculated P n , P e, P p, (1+n), and

finally took the average over	 ^	 and	 b	 Table 15 shows some examples of

Pn'	 Pe' P
p as functions of initial phase.	 Table 16 shows some examples of

the average of	 0	 as a function of impact of parameter 	 b.	 The correction
i

coefficient of the stopping number involves twig Factor; .	 One i s an addi -

tional contribution due to nuclear monentun recoiling.	 As	 b is very small

this factor is very important, as	 b	 becomes larger this effect vanishes.

Another factor is mainly due to the velocity of the electron in the initial

state.	 This factor makes negative contribution on correction (make it less
k.n	 '

than unity)	 as	 VP	 increases this factor becomes negligible. After an

average over	 ¢	 and an average over	 b,	 we obtained table 17 as a function

of the projectiles energy.

Y
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3

Initial	 Phase Momentums after collision

Pp (me-Bohr/sec) Pe (me-Bohr/sec) Pn(me-Bohr/sec)

0 3672 1.47 1.99
1.10 3672 1.37 3.63
2.04 3672 1.21 3.50
2.98 3671 1.73 2.88
4.08 3671 2.15 0.84
4.87 3668 4.72 0.95
5.97 3672 1.25 1.09

Table 15. Momentums after collision as a function of the initial phase.

Initial	 Phase Momentums after collision

P p (me-Bohr/sec) P e(me-Bohr/sec) Pn(ma-Bohr/sec)

0 3672 1.39 9.26
1.10 3672 1.36 11.47
2.04 3672 1.30 11.27
2.98 3667 2.80 2.86
4.08 3671 1.83 12.31
5.03 3667 4.31 7.65
5.97 3672 2.35 1.67

(a) b = .1 (ap) E	 100 key
	

3

r

r	 ^

(b) b =.5 (ao) E=100 key
n	 ,

a

y	 s

Y
r

i

ti

"^►
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..............

r ALA

b(ao)

0.1 80
0.3 8.84
0.5 2.94
0.7 1.41
1.3 1	 0.852

(a) (E=50 keV)

b(ao)

01 19.1
0.3 1.161
0.5 0.9660
0.9 0.9665

Rs	 R
zf

(c) (E=200 keV)

Table 17.

Table 16. 9 as a function of impact parameters

b(aa) 9

0.1 39.2
0,3 3.82
0.5 1.17
0.7 0.9313
0.9 0.9318

(b) (E=100 keV)

b(ao) 9

0.1 7.5
0.3 0.981
0.5 0.983

(d) (E =400 keV)

E(keV) 50 75 100 200 400 1600

2.20 1.43 1.19 1.01 0.991 0.996

E_ -

AA	 R

5
a

tl
ti
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OF PCJf,4

As we expected when projectiles ener gy is small that is when the pro-

jectile moves slow, it causes significant nuclear- momentum recoiling effect.

Meanwhile the initial velocity effect is covered by nuclear recoiling

effect. As projectile moves fast it can not cause significant nuclear re-

coiling momentum. We can see that the initial velocity effect however is

less important when the projectile moves very fast both effects vanish and

there is no correction and we obtain the Bethe's formula.

An approximate useful forinula obtained by fitting the values as energy

greater than 50 kev, i s:
G

1 (1 + 8.9 (V°) 5) ( 1 + 1	 (y°)2)
2	 V	 Vp	 p

Where Vo is the Bohr velocity and V P is the velocity of projectile.

-	 Numerical resul 's of relative correction of stopping number are also calcu-

ed.

L/LO as a function of projectiles . energy are listed below
`

K^

^ppr

e .

tf

E(keV) 50 75 100 200 400 1600

L/L0 1.398 1.15 1.065 1.0035 0.998 0.9993

x	 r

P	
^

k	 7

9 s

r

i

h

s.	 kI

From the table we can see that for the hydrogen atom target and for the

proton as a projectile of 50 keV nuclear recoiling momentun caused a consid-

w	 74
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erable correction (40%) on stopping power for 100 kev about 6-7% correction

on stopping above 200 kev the correction of stopping power can be

negligible.

Argument of Extending to General Material.

Up to now we have calculated the recoiling momentum of hyderogen atom

target. Now we will give an argument that this result can be roughly

extended to a general case of any other atoms. Let us consider proton

proJectile passing through material composed of atoms of charge Ze. Then

due to the columb interaction between proton and nucleus the momentum trans-

fer is:

APn	 : fy(t) dt

where fy(t) is proportional to Zt and is independent of the nuclear

mass. Now only for estimating we suppose that all the momentum obtained by

nuclei is transferred to the electrons. Thus 7_ electrons share their

additional momentun. Hence on the average each electron obtained momentum

'independent of Zt and nuclear mass.

Then the additional stopping power is proportional to Zt but the

stopping number is independent of Zt and nuclear mass. We can roughly say

that the ratio of "additional stopping n umber" to stopping number of any

atom are the sane as for the hydrogen atom.
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