22 research outputs found

    The Forward Physics Facility: Sites, Experiments, and Physics Potential

    Get PDF
    The Forward Physics Facility (FPF) is a proposal to create a cavern with thespace and infrastructure to support a suite of far-forward experiments at theLarge Hadron Collider during the High Luminosity era. Located along the beamcollision axis and shielded from the interaction point by at least 100 m ofconcrete and rock, the FPF will house experiments that will detect particlesoutside the acceptance of the existing large LHC experiments and will observerare and exotic processes in an extremely low-background environment. In thiswork, we summarize the current status of plans for the FPF, including recentprogress in civil engineering in identifying promising sites for the FPF andthe experiments currently envisioned to realize the FPF's physics potential. Wethen review the many Standard Model and new physics topics that will beadvanced by the FPF, including searches for long-lived particles, probes ofdark matter and dark sectors, high-statistics studies of TeV neutrinos of allthree flavors, aspects of perturbative and non-perturbative QCD, andhigh-energy astroparticle physics.<br

    miR-21 mediates hematopoietic suppression in MDS by activating TGF-beta signaling

    No full text
    Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis that leads to peripheral cytopenias. We observed that SMAD7, a negative regulator of transforming growth factor-beta (TGF-Ī²) receptor-I kinase, is markedly reduced in MDS and leads to ineffective hematopoiesis by overactivation of TGF-Ī² signaling. To determine the cause of SMAD7 reduction in MDS, we analyzed the 3'UTR of the gene and determined that it contains a highly conserved putative binding site for microRNA-21. We observed significantly elevated levels of miR-21 in MDS marrow samples when compared with age-matched controls. miR-21 was shown to directly bind to the 3'UTR of SMAD7 and reduce its expression in hematopoietic cells. Next, we tested the role of miR-21 in regulating TGF-Ī² signaling in a TGF-Ī²-overexpressing transgenic mouse model that develops progressive anemia and dysplasia and thus serves as a model of human bone marrow failure. Treatment with a chemically modified miR-21 inhibitor led to significant increases in hematocrit and led to an increase in SMAD7 expression in vivo. Inhibition of miR-21 also led to an increase in erythroid colony formation from primary MDS bone marrow progenitors, demonstrating its ability in stimulating hematopoiesis in vitro. Taken together, these studies demonstrate the role of miR-21 in regulating overactivated TGF-Ī² signaling in MDS

    Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules

    No full text
    Scalable deposition processes at low temperature are urgently needed for the commercialization of perovskite solar cells (PSCs) as they can decrease the energy payback time of PSCs technology. In this work, a processing protocol is presented for highly efficient and stable planar nā€“iā€“p structure PSCs with carbon as the top electrode (carbon-PSCs) fully printed at fairly low temperature by using cheap materials under ambient conditions, thus meeting the requirements for scalable production on an industrial level. High-quality perovskite layers are achieved by using a combinatorial engineering concept, including solvent engineering, additive engineering, and processing engineering. The optimized carbon-PSCs with all layers including electron transport layer, perovskite, hole transport layer, and carbon electrode which are printed under ambient conditions show efficiencies exceeding 18% with enhanced stability, retaining 100% of their initial efficiency after 5000 h in a humid atmosphere. Finally, large-area perovskite modules are successfully obtained and outstanding performance is shown with an efficiency of 15.3% by optimizing the femtosecond laser parameters for the P2 line patterning. These results represent important progress toward fully printed planar carbon electrode perovskite devices as a promising approach for the scaling up and worldwide application of PSCs
    corecore