16 research outputs found

    A unified framework for generalized multicategories

    Full text link
    Notions of generalized multicategory have been defined in numerous contexts throughout the literature, and include such diverse examples as symmetric multicategories, globular operads, Lawvere theories, and topological spaces. In each case, generalized multicategories are defined as the "lax algebras" or "Kleisli monoids" relative to a "monad" on a bicategory. However, the meanings of these words differ from author to author, as do the specific bicategories considered. We propose a unified framework: by working with monads on double categories and related structures (rather than bicategories), one can define generalized multicategories in a way that unifies all previous examples, while at the same time simplifying and clarifying much of the theory.Comment: 76 pages; final version, to appear in TA

    Cartesian differential categories revisited

    Full text link
    We revisit the definition of Cartesian differential categories, showing that a slightly more general version is useful for a number of reasons. As one application, we show that these general differential categories are comonadic over Cartesian categories, so that every Cartesian category has an associated cofree differential category. We also work out the corresponding results when the categories involved have restriction structure, and show that these categories are closed under splitting restriction idempotents.Comment: 17 page

    Differential Bundles in Commutative Algebra and Algebraic Geometry

    Full text link
    In this paper, we explain how the abstract notion of a differential bundle in a tangent category provides a new way to think about the category of modules over a commutative ring and its opposite category. MacAdam previously showed that differential bundles in the tangent category of smooth manifolds are precisely smooth vector bundles. Here we provide characterizations of differential bundles in the tangent categories of commutative rings and (affine) schemes. For commutative rings, the category of differential bundles over a commutative ring is equivalent to the category of modules over that ring. For affine schemes, the category of differential bundles over the Spec of a commutative ring is equivalent to the opposite category of modules over said ring. Finally, for schemes, the category of differential bundles over a scheme is equivalent to the opposite category of quasi-coherent sheaves of modules over that scheme

    Categorical Foundations of Gradient-Based Learning

    Get PDF
    We propose a categorical semantics of gradient-based machine learning algorithms in terms of lenses, parametrised maps, and reverse derivative categories. This foundation provides a powerful explanatory and unifying framework: it encompasses a variety of gradient descent algorithms such as ADAM, AdaGrad, and Nesterov momentum, as well as a variety of loss functions such as as MSE and Softmax cross-entropy, shedding new light on their similarities and differences. Our approach to gradient-based learning has examples generalising beyond the familiar continuous domains (modelled in categories of smooth maps) and can be realized in the discrete setting of boolean circuits. Finally, we demonstrate the practical significance of our framework with an implementation in Python.Comment: 14 page
    corecore