Notions of generalized multicategory have been defined in numerous contexts
throughout the literature, and include such diverse examples as symmetric
multicategories, globular operads, Lawvere theories, and topological spaces. In
each case, generalized multicategories are defined as the "lax algebras" or
"Kleisli monoids" relative to a "monad" on a bicategory. However, the meanings
of these words differ from author to author, as do the specific bicategories
considered. We propose a unified framework: by working with monads on double
categories and related structures (rather than bicategories), one can define
generalized multicategories in a way that unifies all previous examples, while
at the same time simplifying and clarifying much of the theory.Comment: 76 pages; final version, to appear in TA