1,376,357 research outputs found

    critRHIC: The RHIC Low Energy Program

    Get PDF
    Recent experimental and theoretical developments have motivated interest in a more detailed exploration of heavy ion collisions in the range sqrt(sNN)=5-15 GeV. In contrast to interactions at the full RHIC energy of sqrt(sNN)=200 GeV, such collisions result in systems characterized by much higher baryon chemical potential, muB. Extensions of lattice QCD calculations to non-zero values of muB suggest that a critical point may exist in this region of the QCD phase diagram. Discovery of the critical point or, equivalently, determining the location where the phase transition from partonic to hadronic matter switches from a smooth crossover to 1st order would establish a major landmark in the phase diagram. Initial studies of Pb+Pb collisions in this energy range have revealed several unexpected features in the data. In response to these results, it has been suggested that the existing RHIC accelerator and experiments can be used to further the investigation of this important physics topic. This proceeding briefly summarizes the theoretical and experimental situation with particular emphasis on the conclusions from a RIKEN BNL workshop held in March of 2006.Comment: 8 pages, 2 figures, Conference Proceeding from Strangeness in Quark Matter 2006, accepted for publication in J. Phys. G; Added final journal reference and fixed typo in Ref

    Single-Species Reactions on a Random Catalytic Chain

    Full text link
    We present an exact solution for a catalytically-activated annihilation A + A \to 0 reaction taking place on a one-dimensional chain in which some segments (placed at random, with mean concentration p) possess special, catalytic properties. Annihilation reaction takes place, as soon as any two A particles land from the reservoir onto two vacant sites at the extremities of the catalytic segment, or when any A particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another A particle. We find that the disorder-average pressure P(quen)P^{(quen)} per site of such a chain is given by P(quen)=P(lan)+β1FP^{(quen)} = P^{(lan)} + \beta^{-1} F, where P(lan)=β1ln(1+z)P^{(lan)} = \beta^{-1} \ln(1+z) is the Langmuir adsorption pressure, (z being the activity and \beta^{-1} - the temperature), while β1F\beta^{-1} F is the reaction-induced contribution, which can be expressed, under appropriate change of notations, as the Lyapunov exponent for the product of 2 \times 2 random matrices, obtained exactly by Derrida and Hilhorst (J. Phys. A {\bf 16}, 2641 (1983)). Explicit asymptotic formulae for the particle mean density and the compressibility are also presented.Comment: AMSTeX, 17 pages, 1 figure, submitted to J. Phys.

    Limits of space-times in five dimensions and their relation to the Segre Types

    Full text link
    A limiting diagram for the Segre classification in 5-dimensional space-times is obtained, extending a recent work on limits of the energy-momentum tensor in general relativity. Some of Geroch's results on limits of space-times in general relativity are also extended to the context of five-dimensional Kaluza-Klein space-times.Comment: Late

    Concentration of empirical distribution functions with applications to non-i.i.d. models

    Full text link
    The concentration of empirical measures is studied for dependent data, whose joint distribution satisfies Poincar\'{e}-type or logarithmic Sobolev inequalities. The general concentration results are then applied to spectral empirical distribution functions associated with high-dimensional random matrices.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ254 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    U(1)×\timesSU(2) Gauge Invariance Made Simple for Density Functional Approximations

    Full text link
    A semi-relativistic density-functional theory that includes spin-orbit couplings and Zeeman fields on equal footing with the electromagnetic potentials, is an appealing framework to develop a unified first-principles computational approach for non-collinear magnetism, spintronics, orbitronics, and topological states. The basic variables of this theory include the paramagnetic current and the spin-current density, besides the particle and the spin density, and the corresponding exchange-correlation (xc) energy functional is invariant under local U(1)×\timesSU(2) gauge transformations. The xc-energy functional must be approximated to enable practical applications, but, contrary to the case of the standard density functional theory, finding simple approximations suited to deal with realistic atomistic inhomogeneities has been a long-standing challenge. Here, we propose a way out of this impasse by showing that approximate gauge-invariant functionals can be easily generated from existing approximate functionals of ordinary density-functional theory by applying a simple {\it minimal substitution} on the kinetic energy density, which controls the short-range behavior of the exchange hole. Our proposal opens the way to the construction of approximate, yet non-empirical functionals, which do not assume weak inhomogeneity and should therefore have a wide range of applicability in atomic, molecular and condensed matter physics
    corecore