184 research outputs found

    Work and heat probability distribution of an optically driven Brownian particle: Theory and experiments

    Full text link
    We analyze the equations governing the evolution of distributions of the work and the heat exchanged with the environment by a manipulated stochastic system, by means of a compact and general derivation. We obtain explicit solutions for these equations for the case of a dragged Brownian particle in a harmonic potential. We successfully compare the resulting predictions with the outcomes of experiments, consisting in dragging a micron-sized colloidal particle through water with a laser trap

    A simple and reliable approach for the fabrication of nanoporous silver patterns for surface-enhanced Raman spectroscopy applications

    Get PDF
    The fabrication of plasmonic nanostructures with a reliable, low cost and easy approach has become a crucial and urgent challenge in many fields, including surface-enhanced Raman spectroscopy (SERS) based applications. In this frame, nanoporous metal films are quite attractive, due to their intrinsic large surface area and high density of metal nanogaps, acting as hot-spots for Raman signal enhancement. In this paper, we report a detailed study on the fabrication of nanoporous silver-based SERS substrates, obtained by the application of two successive treatments with an Inductively Coupled Plasma (ICP) system, using synthetic air and Ar as feeding gases. The obtained substrates exhibit a quite broad plasmonic response, covering the Vis–NIR range, and an enhancement factor reaching 6.5 ×107, estimated by using 4-mercaptobenzoic acid (4-MBA) as probe molecule at 532 nm. Moreover, the substrates exhibit a quite good spatial reproducibility on a centimeter scale, which assures a good signal stability for analytical measurements. Globally, the developed protocol is easy and cost effective, potentially usable also for mass production thanks to the remarkable inter-batches reproducibility. As such, it holds promise for its use in SERS-based sensing platforms for sensitive detection of targets molecules

    Feasibility of SERS-Active Porous Ag Substrates for the Effective Detection of Pyrene in Water

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that are typically released into the environment during the incomplete combustion of fossil fuels. Due to their relevant carcinogenicity, mutagenicity, and teratogenicity, it is urgent to develop sensitive and cost-effective strategies for monitoring them, especially in aqueous environments. Surface-enhanced Raman spectroscopy (SERS) can potentially be used as a reliable approach for this purpose, as it constitutes a valid alternative to traditional techniques, such as liquid and gas chromatography. Nevertheless, the development of an SERS-based platform for detection PAHs has so far been hindered by the poor adsorption of PAHs onto silver-and gold-based SERS-active substrates. To overcome this limitation, several research efforts have been directed towards the development of functionalized SERS substrates for the improvement of PAH adsorption. However, these strategies suffer from the interference that functionalizing molecules can produce in SERS detection. Herein, we demonstrate the feasibility of label-free detection of pyrene by using a highly porous 3D-SERS substrate produced by an inductively coupled plasma (ICP). Thanks to the coral-like nanopattern exhibited by our substrate, clear signals ascribable to pyrene molecules can be observed with a limit of detection of 23 nM. The observed performance can be attributed to the nanoporous character of our substrate, which combines a high density of hotspots and a certain capability of trapping molecules and favoring their adhesion to the Ag nanopattern. The obtained results demonstrate the potential of our substrates as a large-area, label-free SERS-based platform for chemical sensing and environmental control applications

    Nanoporous silver films produced by solid-state dewetting for SERS applications

    Get PDF
    Detection of analytes in aqueous solution with high specificity and sensitivity is of paramount importance in many fields of science, ranging from biomedicine, environmental control, and food quality assessment. Surface-enhanced Raman scattering (SERS) has proven to be a cutting-edge analytical technique for this purpose, by combining the high selectivity of Raman features with the high sensitivity deriving from the plasmonic amplification of Raman signals. Herein, we report a facile and quite effective approach to fabricate large-area Ag-based SERS substrates, exhibiting a porous, coral-like nanotexture. Due to their intrinsic large surface-area and high hot-spot density, the produced substrates appear quite promising for the detection of analytes at trace levels. The nanoporous substrates are produced by Solid-State Dewetting (SSD) of thin Ag-films. In particular, ~30 nm thickness Ag-films are first deposited on glass coverslips by magnetron sputtering. Then, marked roughening is induced by exposing the films to an Inductively Coupled Plasma (ICP) discharge, using synthetic air as feeding gas. The performances of our SERS substrates are characterized in terms of morphology and enhancement factor using CV as probe molecule

    Raman Microspectroscopy Analysis in the Treatment of Acanthamoeba Keratitis

    Get PDF
    Acanthamoeba keratitis is a rare but serious corneal disease, often observed in contact lens wearers. Clinical treatment of infected patients frequently involves the use of polyhexamethylene biguanide (PHMB), a polymer used as a disinfectant and antiseptic, which is toxic also for the epithelial cells of the cornea. Prompt and effective diagnostic tools are hence highly desiderable for both starting early therapy and timely suspension of the treatment. In this work we use Raman microspectroscopy to analyse in vitro a single Acanthamoeba cell in cystic phase. In particular, we investigate the effect of PHMB at the single-cell level, providing useful information on both the underlying biochemical mechanism and the time frame for Acanthamoeba eradication in ocular infections. Furthermore, we demonstrate that Raman spectroscopy, in conjunction with standard multivariate analysis methods, allows discriminating between live and dead Acanthamoebas, which is fundamental to optimizing patients' treatment

    Influence of rotational force fields on the determination of the work done on a driven Brownian particle

    Full text link
    For a Brownian system the evolution of thermodynamic quantities is a stochastic process. In particular, the work performed on a driven colloidal particle held in an optical trap changes for each realization of the experimental manipulation, even though the manipulation protocol remains unchanged. Nevertheless, the work distribution is governed by established laws. Here, we show how the measurement of the work distribution is influenced by the presence of rotational, i.e. nonconservative, radiation forces. Experiments on particles of different materials show that the rotational radiation forces, and therefore their effect on the work distributions, increase with the particle refractive index.Comment: 12 pages, 4 figure

    Single-Cell Photothermal Analysis Induced by MoS2 Nanoparticles by Raman Spectroscopy

    Get PDF
    Two-dimensional nanomaterials, such as MoS2 nanosheets, have been attracting increasing attention in cancer diagnosis and treatment, thanks to their peculiar physical and chemical properties. Although the mechanisms which regulate the interaction between these nanomaterials and cells are not yet completely understood, many studies have proved their efficient use in the photothermal treatment of cancer, and the response to MoS2 nanosheets at the single-cell level is less investigated. Clearly, this information can help in shedding light on the subtle cellular mechanisms ruling the interaction of this 2D material with cells and, eventually, to its cytotoxicity. In this study, we use confocal micro-Raman spectroscopy to reconstruct the thermal map of single cells targeted with MoS2 under continuous laser irradiation. The experiment is performed by analyzing the water O-H stretching band around 3,400 cm−1 whose tetrahedral structure is sensitive to the molecular environment and temperature. Compared to fluorescence-based approaches, this Raman-based strategy for temperature measurement does not suffer fluorophore instability, which can be significant under continuous laser irradiation. We demonstrate that irradiation of human breast cancer MCF7 cells targeted with MoS2 nanosheets causes a relevant photothermal effect, which is particularly high in the presence of MoS2 nanosheet aggregates. Laser-induced heating is strongly localized near such particles which, in turn, tend to accumulate near the cytoplasmic membrane. Globally, our experimental outcomes are expected to be important for tuning the nanosheet fabrication process

    Understanding the Ultra-Rare Disease Autosomal Dominant Leukodystrophy: an Updated Review on Morpho-Functional Alterations Found in Experimental Models

    Get PDF
    Autosomal dominant leukodystrophy (ADLD) is an ultra-rare, slowly progressive, and fatal neurodegenerative disorder associated with the loss of white matter in the central nervous system (CNS). Several years after its first clinical description, ADLD was found to be caused by coding and non-coding variants in the LMNB1 gene that cause its overexpression in at least the brain of patients. LMNB1 encodes for Lamin B1, a protein of the nuclear lamina. Lamin B1 regulates many cellular processes such as DNA replication, chromatin organization, and senescence. However, its functions have not been fully characterized yet. Nevertheless, Lamin B1 together with the other lamins that constitute the nuclear lamina has firstly the key role of maintaining the nuclear structure. Being the nucleus a dynamic system subject to both biochemical and mechanical regulation, it is conceivable that changes to its structural homeostasis might translate into functional alterations. Under this light, this review aims at describing the pieces of evidence that to date have been obtained regarding the effects of LMNB1 overexpression on cellular morphology and functionality. Moreover, we suggest that further investigation on ADLD morpho-functional consequences is essential to better understand this complex disease and, possibly, other neurological disorders affecting CNS myelination

    N-(Phenoxyalkyl)amides as MT1 and MT2 ligands: Antioxidant properties and inhibition of Ca2+/CaM-dependent kinase II

    Get PDF
    Recently a series of chiral N-(phenoxyalkyl)amides have been reported as potent MT(1) and MT(2) melatonergic ligands. Some of these compounds were selected and tested for their antioxidant properties by measuring their reducing effect against oxidation of 2',7'-dichlorodihydrofluorescein (DCFH) in the DCFH-diacetate (DCFH-DA) assay. Among the tested compounds, N-[2-(3-methoxyphenoxy)propyl]butanamide displayed potent antioxidant activity that was stereoselective, the (R)-enantiomer performing as the eutomer. This compound displayed strong cytoprotective activity against H(2)O(2)-induced cytotoxicity resulting slightly more active than melatonin, and performed as Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitor, to

    The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes

    Get PDF
    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance
    • …
    corecore