7,238 research outputs found

    Probing many-body localization in a disordered quantum magnet

    Get PDF
    Quantum states cohere and interfere. Quantum systems composed of many atoms arranged imperfectly rarely display these properties. Here we demonstrate an exception in a disordered quantum magnet that divides itself into nearly isolated subsystems. We probe these coherent clusters of spins by driving the system beyond its linear response regime at a single frequency and measuring the resulting "hole" in the overall linear spectral response. The Fano shape of the hole encodes the incoherent lifetime as well as coherent mixing of the localized excitations. For the disordered Ising magnet, LiHo0.045Y0.955F4\mathrm{LiHo_{0.045}Y_{0.955}F_4}, the quality factor QQ for spectral holes can be as high as 100,000. We tune the dynamics of the quantum degrees of freedom by sweeping the Fano mixing parameter qq through zero via the amplitude of the ac pump as well as a static external transverse field. The zero-crossing of qq is associated with a dissipationless response at the drive frequency, implying that the off-diagonal matrix element for the two-level system also undergoes a zero-crossing. The identification of localized two-level systems in a dense and disordered dipolar-coupled spin system represents a solid state implementation of many-body localization, pushing the search forward for qubits emerging from strongly-interacting, disordered, many-body systems.Comment: 22 pages, 6 figure

    Caregivers' experiences with the new family‐centred paediatric physiotherapy programme COPCA : a qualitative study

    Get PDF
    Caregivers' experiences during early intervention of their infant with special needs have consequences for their participation in the intervention. Hence, it is vital to understand caregivers' view. This study explored caregivers' experiences with the family-centred early intervention programme "COPing with and CAring for infants with special needs" (COPCA)

    Microscopic and Macroscopic Signatures of Antiferromagnetic Domain Walls

    Get PDF
    Magnetotransport measurements on small single crystals of Cr, the elemental antiferromagnet, reveal the hysteretic thermodynamics of the domain structure. The temperature dependence of the transport coefficients is directly correlated with the real-space evolution of the domain configuration as recorded by x-ray microprobe imaging, revealing the effect of antiferromagnetic domain walls on electron transport. A single antiferromagnetic domain wall interface resistance is deduced to be of order 5×105μΩcm25\times10^{-5}\mathrm{\mu\Omega\cdot cm^{2}} at a temperature of 100 K.Comment: 3 color figure

    Quantum and Classical Glass Transitions in LiHoxY1xF4Li Ho_x Y_{1-x} F_4

    Get PDF
    When performed in the proper low field, low frequency limits, measurements of the dynamics and the nonlinear susceptibility in the model Ising magnet in transverse field, LiHoxY1xF4\text{LiHo}_x\text{Y}_{1-x}\text{F}_4, prove the existence of a spin glass transition for xx = 0.167 and 0.198. The classical behavior tracks for the two concentrations, but the behavior in the quantum regime at large transverse fields differs because of the competing effects of quantum entanglement and random fields.Comment: 5 pages, 5 figures. Updated figure 3 with corrected calibration information for thermometr

    Variational Approach to Gaussian Approximate Coherent States: Quantum Mechanics and Minisuperspace Field Theory

    Get PDF
    This paper has a dual purpose. One aim is to study the evolution of coherent states in ordinary quantum mechanics. This is done by means of a Hamiltonian approach to the evolution of the parameters that define the state. The stability of the solutions is studied. The second aim is to apply these techniques to the study of the stability of minisuperspace solutions in field theory. For a λφ4\lambda \varphi^4 theory we show, both by means of perturbation theory and rigorously by means of theorems of the K.A.M. type, that the homogeneous minisuperspace sector is indeed stable for positive values of the parameters that define the field theory.Comment: 26 pages, Plain TeX, no figure

    High Resolution Study of Magnetic Ordering at Absolute Zero

    Get PDF
    High fidelity pressure measurements in the zero temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the exactitude that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.Comment: 5 pages, 4 figure
    corecore