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Supplementary Note 1: Hole-Burning Background  

We start by considering a set of independent clusters, where the effective low-energy 

Hamiltonian is  𝐻"# = ∑ 𝐻&&  with  

                                          						𝐻& = ∆&	𝜎&* + 𝑀&	ℎ(𝑡)𝜎&1			,																											(1)  

where the sum is over decoupled clusters i characterized by an underlying moment Mi and 

pseudospin operators σi , Δ5 corresponds to the splitting between the two states |⇑⟩ ± |⇓⟩ for 

cluster i, and h(t) is an external drive field. If h(t) is a time-independent constant h>0, the 

magnetization normalized to Mi is 
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					,																																(2)       

where λ5 = HΔ5@ + ℎ@	𝑀5
@. For ℎ𝑀& ≪ ∆5	, 〈σ5=〉 = 	

?
@
𝑀&ℎ/Δ5		while for  ℎ𝑀& ≫ ∆5 , we obtain the 

expected saturation value of 1/2. Now we consider an oscillating field 	ℎ(𝑡) = ℎ cos(ω𝑡) where 

for all i, 	ℏω ≪ λ5. The full magnetization in this case will then merely be 	𝑀(𝑡) =

∑ 𝑀5 < σ5= > cos(ω𝑡)5 . If we relax the condition on 	ℏω	but insist that the drive amplitude 	h ≪

Δ/𝑀5, we obtain the usual linear response form  
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where there is now an out-of-phase response which if the frequency is scanned gives the density 

of states, weighted by 𝑀5
@ for the clusters.  

Once we see a continuum in the out-of-phase linear response for a many-body system, a priori 

we do not know whether we are dealing with a sum of spectra of localized subsystems, as in Eq. 

(1), for which the eigenfunctions are simply given by direct products of the wavefunctions for 

the subsystems, or if we are dealing with shorter-lived excitations whose behavior is dominated 

by coupling between subsystems.  A standard method in spectroscopy to determine whether a 

continuum is due to independent—i.e. localized—two-level systems is to simultaneously relax 

the conditions on 	ω	and h to enter the more interesting and heavily studied regime of driven 

two-level systems. The idea is to apply a large amplitude field at frequency 	ℏω = Δ5 so that 



〈σ5=(t)〉	has oscillations of sufficiently large amplitude so that further increments in field can 

yield only small increases in 〈σ5=〉. Without delving into the mathematics of the time-dependent 

Schrödinger equation1 for the transverse-field Ising Hamiltonian ((1) in main text), one can 

convince oneself (a) of the plausibility of this given the magnetization saturation with increasing 

h in the static limit described by Eq. (2). At the same time, (b) the resonant enhancement of the 

linear response (3) for 	ω	 near Δ5/ℏ	 indicates that we can preferentially excite subsystems i with 

	ω = 	Δ5. (a) and (b) together lead to the conclusion that the sample becomes more transparent to 

radiation at the drive frequency, and a sharp hole is burnt into the spectrum if the two-level 

system in question cannot interact with two level systems with other values of Δ5. If such spectral 

holes can be found in an interacting many-body system, then we have the possibility of probing 

excited states which are direct products of the excited states for subsystems, meaning that the 

entire system cannot act as its own heat bath. If there is a weak residual coupling between 

subsystems, the holes will acquire shapes with width parameters which measure that weak 

coupling.  

Supplementary	Note	2:	Fano	Formalism	

The measurements characterize the spectral holes inserted by a nonlinear drive field into 

the continuum of magnetic excitations in a dense set of interacting dipoles. The large but finite 

lifetime of the excitations is due to a slight mixing between these (almost perfectly) localized 

excitations and the continuum formed by their ensemble. The mixing manifests itself in both the 

decay rate G	and	the	Fano	q parameter (c.f. Eq. (2) in main text). The former is given by Fermi’s 

golden rule:  

ℏΓ = 		2𝜋T 𝑉e@𝛿(ℏ𝜔 − 𝐸e)
e

								.																																																																																			(4) 

The q parameter is due to interference between processes taking the ground state of a localized 

subsystem to an excited state either directly or via another (nearly) localized subsystem2: 

𝑞 =
𝑀jk + ℙ∑

𝑀je𝑉e
(ℏ𝜔 − 𝐸e)e

𝜋 ∑ 𝑀je𝑉e𝛿(ℏ𝜔 − 𝐸e)e
			,																																																																																										(5) 



where 𝑀jk = ⟨𝑔|𝑀|𝛼⟩ and 𝑀je = ⟨𝑔|𝑀|𝑘⟩ are the matrix elements connecting the ground state 

to the discrete excited state and to the continuum, respectively. In (4) and (5),  𝑉e is the matrix 

element connecting the discrete excited state to the kth continuum state, which has energy 𝐸e.2 

Inspection of Eq. (5) allows us to start to understand the zero crossing of q. In the nonlinear 

regime, the numerator has a modified matrix element 𝑀jrkr	 describing how the longitudinal 

magnetic field couples the ground and excited states 𝑔s and 𝛼s as modified by the drive field 

from g and 𝛼 , while the denominator contains the product of the analogous matrix element 𝑀je 

for off-resonant pairs of ground and excited states and the hopping terms 𝑉e between the 

resonant and off-resonant excited states. It is unlikely that the off-resonant 𝑀je will be much 

changed by external ac and dc fields, and so—assuming that the principal value term in the 

numerator cancels to zero—sign changes in q follow from a sign change either in 𝑀jrkr or in 𝑉e. 

A sign change in the latter actually would imply a zero in the former as well because without 

such a zero, q would diverge at the critical pump (Fig. 5) or transverse (Fig. 6) field hc. Where all 

terms in Eq. (5) are analytic near the zero crossing, and with the knowledge that q is linear in 

hpump and Ht near the zero crossing, we can draw a sharper conclusion, namely that 𝑀jk scales 

like (ℎ − ℎt)uv?  if 𝑉e scales like (ℎ − ℎt)u. To determine n, we can invoke Eq. (4) and the 

experimental data which show no significant evolution in G as a function of the parameters h and 

Ht, leading to the conclusion that near the zero crossing of q, the exponent characterizing the 

bath coupling Vk as a function of h and Ht is n=0. Therefore, what is driving the zero crossing is 

only a zero crossing of the matrix element 𝑀jk connecting the ground and excited states of the 

localized subsystems. This means that as hpump crosses hc, the incremental magnetization 𝛿𝑀  due 

to mixing of ground 𝑔(ℎ) and excited 𝛼(ℎ) states moves from in-phase to out-of-phase with 

small additional drive fields 𝛿ℎ. It is reasonable to believe that where this occurs, the incremental 

magnetization due to the changing occupancies of the ground and excited states will be highest 

so that as we observe in the experiment, the zero crossing of q will coincide with the maximum 

of the total susceptibility which sums diagonal (state occupancy-dominated) and off-diagonal 

(𝑀jk	-dominated) contributions. A further consequence of such considerations is that as the off-

diagonal matrix element 𝑀jk	which accounts for the Fano effect grows from zero, it will also 

account for an ever larger fraction of the dissipation measured directly at the pump frequency. 

Considering this mixing allows for proposal of a phenomenological form for the phase angles: 
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