21,888 research outputs found
Mode-matching analysis of a shielded rectangular dielectric-rod waveguide
Rectangular cross-section dielectric waveguides are widely used at millimeter wavelengths. In addition, shielded
dielectric resonators having a square cross-section are often used as filter elements, however there is almost no information available on the effect of the shield. Rectangular or square dielectric waveguide is notoriously difficult to analyze, because of the singular behaviour of the fields at the corners. Most published analyses are for materials with a low dielectric constant, and do not include the effects of a shield.
This paper describes a numerically efficient mode matching method for the analysis of shielded dielectric rod waveguide, which is applicable to both low and high dielectric constant materials. The effect of the shield on the propagation behaviour is studied. The shield dimensions
may be selected such that the shield has a negligible effect, so that results can be compared with free space data. The results are verified by comparison with several sets of published data, and have been confirmed by measurement for a nominal 'e' r of 37.4
Surveyor lunar touchdown stability study Final report, Jul. 1965 - Jul. 1966
Dynamic analysis and computer simulation of Surveyor lunar landing stabilit
Method of fan sound mode structure determination computer program user's manual: Modal calculation program
A computer user's manual describing the operation and the essential features of the Modal Calculation Program is presented. The modal Calculation Program calculates the amplitude and phase of modal structures by means of acoustic pressure measurements obtained from microphones placed at selected locations within the fan inlet duct. In addition, the Modal Calculation Program also calculates the first-order errors in the modal coefficients that are due to tolerances in microphone location coordinates and inaccuracies in the acoustic pressure measurements
Method of fan sound mode structure determination computer program user's manual: Microphone location program
A computer user's manual describing the operation and the essential features of the microphone location program is presented. The Microphone Location Program determines microphone locations that ensure accurate and stable results from the equation system used to calculate modal structures. As part of the computational procedure for the Microphone Location Program, a first-order measure of the stability of the equation system was indicated by a matrix 'conditioning' number
Method of fan sound mode structure determination
A method for the determination of fan sound mode structure in the Inlet of turbofan engines using in-duct acoustic pressure measurements is presented. The method is based on the simultaneous solution of a set of equations whose unknowns are modal amplitude and phase. A computer program for the solution of the equation set was developed. An additional computer program was developed which calculates microphone locations the use of which results in an equation set that does not give rise to numerical instabilities. In addition to the development of a method for determination of coherent modal structure, experimental and analytical approaches are developed for the determination of the amplitude frequency spectrum of randomly generated sound models for use in narrow annulus ducts. Two approaches are defined: one based on the use of cross-spectral techniques and the other based on the use of an array of microphones
An Economic Evaluation of Precision Deep Tillage Practices through the Analysis of Comparative Enterprise Budgets
Precision deep tillage allows for lower use of tillage though recognized variation with in a field. Comparative enterprise budgets, breakeven, and sensitivity analysis were preformed to prove that under long-term no-till conditions precision deep tillage can be a profitable form of tillage that will enter an optimal producer strategy.Farm Management,
PeV-Scale Supersymmetry
Although supersymmetry has not been seen directly by experiment, there are
powerful physics reasons to suspect that it should be an ingredient of nature
and that superpartner masses should be somewhat near the weak scale. I present
an argument that if we dismiss our ordinary intuition of finetuning, and focus
entirely on more concrete physics issues, the PeV scale might be the best place
for supersymmetry. PeV-scale supersymmetry admits gauge coupling unification,
predicts a Higgs mass between 125 GeV and 155 GeV, and generally disallows
flavor changing neutral currents and CP violating effects in conflict with
current experiment. The PeV scale is motivated independently by dark matter and
neutrino mass considerations.Comment: 5 RevTex page
Orbital surveys and state resource management
The resource management implications of satellite earth resource surveys for the state of Ohio are discussed. Discussions cover environmental problems, planning future developments, and short- and long-range benefits of such resource management
The Adiabatic Invariance of the Action Variable in Classical Dynamics
We consider one-dimensional classical time-dependent Hamiltonian systems with
quasi-periodic orbits. It is well-known that such systems possess an adiabatic
invariant which coincides with the action variable of the Hamiltonian
formalism. We present a new proof of the adiabatic invariance of this quantity
and illustrate our arguments by means of explicit calculations for the harmonic
oscillator.
The new proof makes essential use of the Hamiltonian formalism. The key step
is the introduction of a slowly-varying quantity closely related to the action
variable. This new quantity arises naturally within the Hamiltonian framework
as follows: a canonical transformation is first performed to convert the system
to action-angle coordinates; then the new quantity is constructed as an action
integral (effectively a new action variable) using the new coordinates. The
integration required for this construction provides, in a natural way, the
averaging procedure introduced in other proofs, though here it is an average in
phase space rather than over time.Comment: 8 page
- …