12,768 research outputs found

    Pressure dependence of the superconducting transition and electron correlations in Na_xCoO_2 \cdot 1.3H_2O

    Full text link
    We report T_c and ^{59}Co nuclear quadrupole resonance (NQR) measurements on the cobalt oxide superconductor Na_{x}CoO_{2}\cdot 1.3H_{2}O (T_c=4.8 K) under hydrostatic pressure (P) up to 2.36 GPa. T_c decreases with increasing pressure at an average rate of -0.49\pm0.09 K/GPa. At low pressures P\leq0.49 GPa, the decrease of T_c is accompanied by a weakening of the spin correlations at a finite wave vector and a reduction of the density of states (DOS) at the Fermi level. At high pressures above 1.93 GPa, however, the decrease of T_c is mainly due to a reduction of the DOS. These results indicate that the electronic/magnetic state of Co is primarily responsible for the superconductivity. The spin-lattice relaxation rate 1/T_1 at P=0.49 GPa shows a T^3 variation below T_c down to T\sim 0.12T_c, which provides compelling evidence for the presence of line nodes in the superconducting gap function.Comment: published on 19, Sept. 2007 on Phys. Rev.

    Knowledge discovery for friction stir welding via data driven approaches: Part 2 – multiobjective modelling using fuzzy rule based systems

    Get PDF
    In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ‘Pareto-optimal’ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge

    A general condition of inflationary cosmology on trans-Planckian physics

    Full text link
    We consider a more general initial condition satisfying the minimal uncertainty relationship. We calculate the power spectrum of a simple model in inflationary cosmology. The results depend on perturbations generated below a fundamental scale, e.g. the Planck scale.Comment: 7 pages, References adde

    Improving Orbit Estimates for Incomplete Orbits with a New Approach to Priors -- with Applications from Black Holes to Planets

    Get PDF
    We propose a new approach to Bayesian prior probability distributions (priors) that can improve orbital solutions for low-phase-coverage orbits, where data cover less than approximately 40% of an orbit. In instances of low phase coverage such as with stellar orbits in the Galactic center or with directly-imaged exoplanets, data have low constraining power and thus priors can bias parameter estimates and produce under-estimated confidence intervals. Uniform priors, which are commonly assumed in orbit fitting, are notorious for this. We propose a new observable-based prior paradigm that is based on uniformity in observables. We compare performance of this observable-based prior and of commonly assumed uniform priors using Galactic center and directly-imaged exoplanet (HR 8799) data. The observable-based prior can reduce biases in model parameters by a factor of two and helps avoid under-estimation of confidence intervals for simulations with less than about 40% phase coverage. Above this threshold, orbital solutions for objects with sufficient phase coverage such as S0-2, a short-period star at the Galactic center with full phase coverage, are consistent with previously published results. Below this threshold, the observable-based prior limits prior influence in regions of prior dominance and increases data influence. Using the observable-based prior, HR 8799 orbital analyses favor lower eccentricity orbits and provide stronger evidence that the four planets have a consistent inclination around 30 degrees to within 1-sigma. This analysis also allows for the possibility of coplanarity. We present metrics to quantify improvements in orbital estimates with different priors so that observable-based prior frameworks can be tested and implemented for other low-phase-coverage orbits.Comment: Published in AJ. 23 pages, 14 figures. Monte Carlo chains are available in the published article, or are available upon reques

    Analytical solution of the dynamical spherical MIT bag

    Get PDF
    We prove that when the bag surface is allowed to move radially, the equations of motion derived from the MIT bag Lagrangian with massless quarks and a spherical boundary admit only one solution, which corresponds to a bag expanding at the speed of light. This result implies that some new physics ingredients, such as coupling to meson fields, are needed to make the dynamical bag a consistent model of hadrons.Comment: Revtex, no figures. Submitted to Journal of Physics

    Na content dependence of superconductivity and the spin correlations in Na_{x}CoO_{2}\cdot 1.3H_{2}O

    Full text link
    We report systematic measurements using the ^{59}Co nuclear quadrupole resonance(NQR) technique on the cobalt oxide superconductors Na_{x}CoO_{2}\cdot 1.3H_{2}O over a wide Na content range x=0.25\sim 0.34. We find that T_c increases with decreasing x but reaches to a plateau for x \leq0.28. In the sample with x \sim 0.26, the spin-lattice relaxation rate 1/T_1 shows a T^3 variation below T_c and down to T\sim T_c/6, which unambiguously indicates the presence of line nodes in the superconducting (SC) gap function. However, for larger or smaller x, 1/T_1 deviates from the T^3 variation below T\sim 2 K even though the T_c (\sim 4.7 K) is similar, which suggests an unusual evolution of the SC state. In the normal state, the spin correlations at a finite wave vector become stronger upon decreasing x, and the density of states at the Fermi level increases with decreasing x, which can be understood in terms of a single-orbital picture suggested on the basis of LDA calculation.Comment: version published in J. Phys. Condens. Matter (references updated and more added

    Shallow BF2 implants in Xe-bombardment-preamorphized Si: the interaction between Xe and F

    Get PDF
    Si(100) samples, preamorphized to a depth of ~30 nm using 20 keV Xe ions to a nominal fluence of 2×1014 cm-2 were implanted with 1 and 3 keV BF2 ions to fluences of 7×1014 cm-2. Following annealing over a range of temperatures (from 600 to 1130 °C) and times the implant redistribution was investigated using medium-energy ion scattering (MEIS), secondary ion mass spectrometry (SIMS), and energy filtered transmission electron microscopy (EFTEM). MEIS studies showed that for all annealing conditions leading to solid phase epitaxial regrowth, approximately half of the Xe had accumulated at depths of 7 nm for the 1 keV and at 13 nm for the 3 keV BF2 implant. These depths correspond to the end of range of the B and F within the amorphous Si. SIMS showed that in the preamorphized samples, approximately 10% of the F migrates into the bulk and is trapped at the same depths in a ~1:1 ratio to Xe. These observations indicate an interaction between the Xe and F implants and a damage structure that becomes a trapping site. A small fraction of the implanted B is also trapped at this depth. EXTEM micrographs suggest the development of Xe agglomerates at the depths determined by MEIS. The effect is interpreted in terms of the formation of a volume defect structure within the amorphized Si, leading to F stabilized Xe agglomerates or XeF precipitates

    Vortex avalanches and self organized criticality in superconducting niobium

    Full text link
    In 1993 Tang proposed [1] that vortex avalanches should produce a self organized critical state in superconductors, but conclusive evidence for this has heretofore been lacking. In the present paper, we report extensive micro-Hall probe data from the vortex dynamics in superconducting niobium, where a broad distribution of avalanche sizes scaling as a power-law for more than two decades is found. The measurements are combined with magneto-optical imaging, and show that over a widely varying magnetic landscape the scaling behaviour does not change, hence establishing that the dynamics of superconducting vortices is a SOC phenomenon.Comment: 3 pages + 4 figures, a reference added, citation typos fixe
    • …
    corecore