328 research outputs found

    Capacitance study of thin film SnO2:F/p-type a-Si:H heterojunctions

    Get PDF
    Abstract We characterized SnO 2 :F/p-type a-Si:H heterojunctions by current-voltage (I-V) and capacitance-voltage (C-V) measurements at room temperature to determine the junction parameters. Samples with circular geometry and different diameters were characterized. The current scales with the junction area, and the current density J as a function of the voltage V is a slightly asymmetric curve with a super-linear behaviour (cubic law) for high voltages. Using a transmission line model valid for devices with circular geometry, we studied the effects of the SnO 2 :F resistivity on the measured capacitance when the SnO2:F layer works as an electrical contact. The measured C-V curve allows us to determine junction parameters as doping of p-type a-Si:H, built-in potential and depletion width for the heterojunction with the smallest diameters, demonstrating that for these samples the TCO effects can be neglected. We compared theoretical and measured data to explain qualitatively the transport mechanism in this heterojunction

    Energy resolution and throughput of a new real time digital pulse processing system for x-ray and gamma ray semiconductor detectors

    Get PDF
    New generation spectroscopy systems have advanced towards digital pulse processing (DPP) approaches. DPP systems, based on direct digitizing and processing of detector signals, have recently been favoured over analog pulse processing electronics, ensuring higher flexibility, stability, lower dead time, higher throughput and better spectroscopic performance. In this work, we present the performance of a new real time DPP system for X-ray and gamma ray semiconductor detectors. The system is based on a commercial digitizer equipped with a custom DPP firmware, developed by our group, for on-line pulse shape and height analysis. X-ray and gamma ray spectra measurements with cadmium telluride (CdTe) and germanium (Ge) detectors, coupled to resistivefeedback preamplifiers, highlight the excellent performance of the system both at low and high rate environments (up to 800 kcps). A comparison with a conventional analog electronics showed the better high-rate capabilities of the digital approach, in terms of energy resolution and throughput. These results make the proposed DPP system a very attractive tool for both laboratory research and for the development of advanced detection systems for high-rate-resolution spectroscopic imaging, recently proposed in diagnostic medicine, industrial imaging and security screening

    Multiple interannual records of young-of-the-year identify an important area for the protection of the shortfin mako, Isurus oxyrinchus

    Get PDF
    The shortfin mako (Isurus oxyrinchus) is the second most fishery-exploited pelagic shark in the Mediterranean Sea, thus its conservation status is a cause for concern. Despite the species has been listed in fishery and trade regulations to hinder its population decline, the lack of knowledge on its distribution patterns and habitats essential for its persistence still hampers the implementation of sound conservation actions. Combining data from local expert knowledge, opportunistic catch records, and Baited Remote Underwater Videos, we show evidence of the interannual presence of young-of-the-year (YOY) I. oxyrinchus in the Pelagie Archipelago (Central Mediterranean Sea). A total of twenty-one individuals ranging 71–92.5 cm FL were incidentally caught (on average 2.3 YOY/1000 hooks) or documented on BRUVS in July and August over three consecutive years. These data coupled with questionnaires administered to longline fishers identify one specific area used by YOY in the summer months. Our study presents the most abundant record of YOY shortfin makos in the Mediterranean Sea within such a restricted time and limited area providing important information for improving the protection of this critically endangered species

    A 2-year comparative open label randomized study of efficacy and safety of etanercept and infliximab in patients with ankylosing spondylitis

    Get PDF
    The signs and symptoms of ankylosing spondylitis (AS) respond inadequately to nonsteroidal antiinflammatory drugs, corticosteroids, and disease modifying antirheumatic drugs in quite a number of patients. Tumor necrosis factor inhibitors have demonstrated to be of value in reducing AS disease activity in clinical trials. The efficacy and safety of both etanercept and infliximab in patients with ankylosing spondylitis were compared in a 2-year open label randomised study. Our results are consistent with a significant more rapid clinical improvement in the infliximab treated group. Treatment with both etanercept and infliximab at the end of the study was effective, safe, and well tolerated. \ua9 2009 Springer-Verlag

    Window-Based Energy Selecting X-ray Imaging and Charge Sharing in Cadmium Zinc Telluride Linear Array Detectors for Contaminant Detection

    Get PDF
    The spectroscopic and imaging performance of energy-resolved photon counting detectors, based on new sub-millimetre boron oxide encapsulated vertical Bridgman cadmium zinc telluride linear arrays, are presented in this work. The activities are in the framework of the AVATAR X project, planning the development of X-ray scanners for contaminant detection in food industry. The detectors, characterized by high spatial (250 ”m) and energy (<3 keV) resolution, allow spectral X-ray imaging with interesting image quality improvements. The effects of charge sharing and energy-resolved techniques on contrast-to-noise ratio (CNR) enhancements are investigated. The benefits of a new energy-resolved X-ray imaging approach, termed window-based energy selecting, in the detection of low- and high-density contaminants are also shown

    Carrier transport mechanism in the SnO2:F/p-type a-Si:H heterojunction

    Get PDF
    We characterize SnO2:F/p-type a-Si:H/Mo structures by current-voltage (I-V) and capacitance-voltage (C-V) measurements at different temperatures to determine the transport mechanism in the SnO2:F/p-type a-Si:H heterojunction. The experimental I-V curves of these structures, almost symmetric around the origin, are ohmic for |V| 0.1 V. The structure can be modeled as two diodes back to back connected so that the main current transport mechanisms are due to the reverse current of the diodes. To explain the measured C-V curves, the capacitance of the heterostructure is modeled as the series connection of the depletion capacitances of the two back to back connected SnO2:F/p-type a-Si:H and Mo/p-type a-Si:H junctions. We simulated the reverse I-V curves of the SnO2:F/p-type a-Si:H heterojunction at different temperatures by using the simulation software SCAPS 2.9.03. In the model the main transport mechanism is generation of holes enhanced by tunneling by acceptor-type interface defects with a trap energy of 0.4 eV above the valence bandedge of the p-type a-Si:H layer and with a density of 4.0 10^13 cm^-2. By using I-V simulations and the proposed C-V model the built-in potential (Vbi) of the SnO2:F/p-type a-Si:H (0.16 V) and p-type a-Si:H/Mo (0.14 V) heterojunctions are extracted and a band diagram of the characterized structure is proposed

    Advances in High-Energy-Resolution CdZnTe Linear Array Pixel Detectors with Fast and Low Noise Readout Electronics

    Get PDF
    Radiation detectors based on Cadmium Zinc Telluride (CZT) compounds are becoming popular solutions thanks to their high detection efficiency, room temperature operation, and to their reliability in compact detection systems for medical, astrophysical, or industrial applications. However, despite a huge effort to improve the technological process, CZT detectors’ full potential has not been completely exploited when both high spatial and energy resolution are required by the application, especially at low energies (<10 keV), limiting their application in energy-resolved photon counting (ERPC) systems. This gap can also be attributed to the lack of dedicated front-end electronics which can bring out the best in terms of detector spectroscopic performances. In this work, we present the latest results achieved in terms of energy resolution using SIRIO, a fast low-noise charge sensitive amplifier, and a linear-array pixel detector, based on boron oxide encapsulated vertical Bridgman-grown B-VB CZT crystals. The detector features a 0.25-mm pitch, a 1-mm thickness and is operated at a −700-V bias voltage. An equivalent noise charge of 39.2 el. r.m.s. (corresponding to 412 eV FWHM) was measured on the test pulser at 32 ns peaking time, leading to a raw resolution of 1.3% (782 eV FWHM) on the 59 keV line at room temperature (+20 °C) using an uncollimated 241Am, largely improving the current state of the art for CZT-based detection systems at such short peaking times, and achieving an optimum resolution of 0.97% (576 eV FWHM) at 1 ”s peaking time. The measured energy resolution at the 122 keV line and with 1 ”s peaking time of a 57Co raw uncollimated spectrum is 0.96% (1.17 keV). These activities are in the framework of an Italian collaboration on the development of energy-resolved X-ray scanners for material recycling, medical applications, and non-destructive testing in the food industry

    Alanine films for EPR dosimetry of low-energy (1-30 keV) X-ray photons

    Get PDF
    L-alpha-alanine has aroused considerable interest for use in radiation EPR dosimetry and has been formally accepted as a secondary standard for high-dose (kGy) and transfer dosimetry of high-energy photons and electrons. In this work, we extended the investigation of the energy response of alanine EPR films in the low energy range for X-photons (1-30 keV). Electron Paramagnetic Resonance (EPR) measurements were performed on Kodak BioMax alanine films exposed to low-energy X-rays from a Cu-, W- and Mo-targets tube operating at voltages up to 30 kV. Films were chosen because of the low penetration of the soft X-rays used. The response of alanine to low-energy X-rays was characterized experimentally and the relative response (with respect to high energy photons) was found to be between 0.8 and 0.9 for Cu- and W-tube X-rays, and 1.0 for Mo-tube X-rays. The attenuation profiles were investigated and it was found that 1 mm of film material reduces the intensity of the X-ray-beam by about 70%, 50% and 40% for Cu-, W- and Mo-tube X-rays, respectively. Monte Carlo simulations were performed to model the energy release as well as the depth dose profiles for the various radiation beams used. These data are considered relevant for dosimetric applications in low energy beams such the high-gradient treatment fields used in monoenergetic microbeam radiation therapy (MRT) with synchrotron radiation as well as in brachytherapy with low energy sources, for instance Yb-169
    • 

    corecore