2,063 research outputs found

    Transient response for interaction of two dynamic bodies

    Get PDF
    During the launch sequence of any space vehicle complicated boundary interactions occur between the vehicle and the launch stand. At the start of the sequence large forces exist between the two; contact is then broken in a short but finite time which depends on the release mechanism. The resulting vehicle response produces loads which are very high and often form the design case. It is known that the treatment of the launch pad as a second dynamic body is significant for an accurate prediction of launch response. A technique was developed for obtaining loads generated by the launch transient with the effect of pad dynamics included. The method solves uncoupled vehicle and pad equations of motion. The use of uncoupled models allows the simulation of vehicle launch in a single computer run. Modal formulation allows a closed-form solution to be written, eliminating any need for a numerical integration algorithm. When the vehicle is on the pad the uncoupled pad and vehicle equations have to be modified to account for the constraints they impose on each other. This necessitates the use of an iterative procedure to converge to a solution, using Lagrange multipliers to apply the required constraints. As the vehicle lifts off the pad the coupling between the vehicle and the pad is eliminated point by point until the vehicle flies free. Results obtained by this method were shown to be in good agreement with observed loads and other analysis methods. The resulting computer program is general, and was used without modification to solve a variety of contact problems

    Re-visiting the One-Time Pad

    Full text link
    In 1949, Shannon proved the perfect secrecy of the Vernam cryptographic system,also popularly known as the One-Time Pad (OTP). Since then, it has been believed that the perfectly random and uncompressible OTP which is transmitted needs to have a length equal to the message length for this result to be true. In this paper, we prove that the length of the transmitted OTP which actually contains useful information need not be compromised and could be less than the message length without sacrificing perfect secrecy. We also provide a new interpretation for the OTP encryption by treating the message bits as making True/False statements about the pad, which we define as a private-object. We introduce the paradigm of private-object cryptography where messages are transmitted by verifying statements about a secret-object. We conclude by suggesting the use of Formal Axiomatic Systems for investing N bits of secret.Comment: 13 pages, 3 figures, submitted for publication to IndoCrypt 2005 conferenc

    Violation of Bell's inequality for phase singular beams

    Full text link
    We have considered optical beams with phase singularity and experimentally verified that these beams, although being classical, have properties of two mode entanglement in quantum states. We have observed the violation of Bell's inequality for continuous variables using the Wigner distribution function (WDF) proposed by Chowdhury et al. [Phys. Rev. A \textbf{88}, 013830 (2013)]. Our experiment establishes a new form of Bell's inequality in terms of the WDF which can be used for classical as well as quantum systems.Comment: 7 pages, 9 figures and 1 tabl

    Acoustical-Mode-Driven Electron-Phonon Coupling in Transition-Metal Diborides

    Full text link
    We show that the electron-phonon coupling in the transition-metal diborides NbB2 and TaB2 is dominated by the longitudinal acoustical (LA) mode, in contrast to the optical E_{2g} mode dominated coupling in MgB2. Our ab initio results, described in terms of phonon dispersion, linewidth, and partial electron-phonon coupling along Gamma to A, also show that (i) NbB2 and TaB2 have a relatively weak electron-phonon coupling, (ii) the E_{2g} linewidth is an order of magnitude larger in MgB2 than in NbB2 or TaB2, (iii) the E_{2g} frequency in NbB2 and TaB2 is considerably higher than in MgB2, and (iv) the LA frequency at A for TaB2 is almost half of that of MgB2 or NbB2.Comment: 4 pages, 4 figures, and 1 tabl
    corecore