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Martin Marietta Michoud Aerospace, New Orleans, Louisiana

ABSTRACT

During the launch sequence of any space vehicle complicated boundary interactions occur between the
vehicle and the launch stand. At the start of the sequence large forces exist between the two; contact is
then broken in a short but finite time which depends on the release mechanism. The resulting vehicle
response produces loads which are very high and often form the design case. It is known that the
treatment of the launch pad as a second dynamic body is significant for an accurate prediction of launch
response.

A technique has been developed for obtaining loads generated by the launch transient with the effect of
pad dynamics included. The method solves uncoupled vehicle and pad equations of motion. The use of
uncoupled models allows the simulation of vehicle launch in a single computer run. There is no need for a
second computer run to introduce compensating forces that are required to simulate detachment for
coupled models. Modal formulation allows a closed-form solution to be written, eliminating any need for a
numerical integration algorithm.

When the vehicle is on the pad the uncoupled pad and vehicle equations have to be modified to account
for the constraints they impose on each other. This necessitates the use of an iterative procedure to
converge to a solution, using Lagrange multipliers to apply the required constraints. As the vehicle lifts off
the pad the coupling between the vehicle and the pad is eliminated point by point until the vehicle flies
free.

Results obtained by this method have been shown to be in good agreement with observed loads and
other analysis methods.

The resulting computer program is general, and has been used without modification to solve a variety of
contact problems. The contact point description could be made more elaborate to include effects of
friction, geometry, etc. By allowing the second body (it need not be a pad) to have rigid body free-free
modes other problems, such as berthing/docking dynamics, could be tackled.
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TRANSIENT RESPONSE FOR INTERACTION OF TWO DYNAMIC BODIES

by

A. Prabhakar & L.G. Palermo

Martin Marietta Michoud Aerospace, New Orleans, Louisiana

1.0 INTRODUCTION

This paper describes a method of obtaining the transient response of two interacting dynamic bodies. The
technique was developed originally to obtain the response during the launch sequence of the Space
Shuttle Vehicle (SSV) from a dynamic launch pad. Because of the historical association with the SSV
launch problem this paper presents the development from that particular viewpoint but it must be
emphasised that the method is generally applicable, and the resulting computer code has been used in
solving a variety of contact problems.

The launch event of any space vehicle causes complicated boundary interactions between the vehicle
and the launch stand. At the start of the sequence large forces exist between the two; contact is then
broken in a short but finite time which depends on the release mechanism. During this time the two may
recontact as the loads are redistributed in the system. The vehicle response resulting from this non-linear
transient phenomenon produces loads which often form the design case. It is known from experience that
the use of a non-dynamic launch pad predicts loads that are too high. Therefore the treatment of the
launch pad as a second dynamic body is significant for an accurate prediction of launch response.

A technique has been developed for obtaining loads generated by the launch transient with the effect of
pad dynamics included (ref. 1). The method solves uncoupled vehicle and pad equations of motion. The
use of uncoupled models allows the simulation of vehicle launch in a single computer run. There is no
need for a second computer run to introduce compensating forces that are required to simulate
detachment for coupled models. Modal formulation allows a closed-form solution to be written, eliminating
any need for a numerical integration algorithm. However, an iterative procedure is required to solve the
equations of motion when the two bodies are in contact.

Several other factors influence the response from the launch transient. A control system maintains a
vertical vehicle attitude, zeroing out angular accelerations, by changing the direction of the thrust vector of
the Solid Rocket Boosters (SRBs). Another source of large loads is from the constraints imposed on the
cryogenic shrinkage of the External Tank (ET); these loads are relieved as the vehicle separates from the
launch pad. Also important is a second order effect resulting from the offset centre of gravity of the vehicle.
This offset c.g. would tend to induce greater structural deflection than can be obtained normally; we have
termed this effect "gravity softening'. Techniques for the proper simulation of these effects are discussed
in the paper. An area for further development is to make the contact point description more elaborate to
include the effects of friction, geometry, misalignment, etc.

AlthoiJgh in the development presented in this paper the pad is a grounded body, it could be made more
general and have rigid body modes allowed. This would enable the technique to be used in calculating the
berthing/docking dynamic response for the Space Station.
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NOMENCLATURE

CM
F

F(t)
g
h
I
K
M

MB,KB

q
RB
X

Xg

Coupling mass term in Craig-Bampton formulation of analysis models.

Generalised force.
Discrete time variant applied force.
Gravitational acceleration.
Integration interval.
Identity matrix
Stiffness matrix.
Mass matrix.
Boundary mass and stiffness terms in Craig-Bampton formulation.

Modal freedoms.
Geometric rigid body modeshape.
Discrete freedoms.
Freedoms of the centre of gravity of the vehicle.

d>

n

,¢

%

Modeshapes matrix.

Error between successive iterations.

Time variation during an integration interval.

Natural frequency (radians/$ec).

Ratio of critical damping.

A
V

S

C
0

Applied
Vehicle
Launch stand
Contact
Values at time zero (initial values)

T Transpose
-1 Inverse
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2.0 THEORETICAL DEVELOPMENT

The development presented in this paper uses equations of motion of the two bodies (vehicle and pad )
which are uncoupled from one another. The use of such uncoupled equations is more natural
conceptually as it allows the two bodies to be treated independently. The free-free vehicle can thus fly off
the pad without inducing the compensating forces that are required when a coupled system model is
used, and the solution can be obtained in one computer run. However, when the vehicle is on the pad the
uncoupled pad and vehicle equations have to be modified to account for the constraints they impose on
each other. This necessitates the use of an iterative procedure to converge to a solution, effectively using
Lagrange multipliers to apply the required constraints. As the vehicle lifts off the pad the coupling
between the vehicle and the pad is eliminated point by point until the vehicle flies free.

2.1 EQUATIONS OF MOTION

Write the uncoupled vehicle and stand equations as

r M_ o 1 (;_v'_* r K_ 0 I (Xv'_ - ('F(t)] (_)
LO MsJt%J Lo KsJ txsJ t o J

Assume that the coupling between the vehicle and the main launch pad (MLP) equations is a pure
stiffness i.e. the coupling is massless. This coupling stiffness KC would overlay the relevant vehicle and

stand degrees of freedom when the two are in contact. Equations of motion can now be written as

FMv 0 'l('xv'_ * rrKv o 1 + r Kcl"l('Xv'_ = ('F(t)'_

Lo MsJ_,'Xs.) LEo KsJ L JJkxs) L,o )

(2)

The coupling matrix KC can be partitioned out and taken to the right hand side of (2) giving

olt' v' + r,<,, o lrx,,_ - m,_ - rKc l(xv'/
Lo MsJk'_s) Lo KsJkxs) tO ) L JLxs)

(3)

i.e. the coupled system equations have been written in terms of the uncoupled degrees of freedom with a
correction term (force) for the effect of interaction between vehicle and stand. This constraint imposed by
the interaction of the pad and vehicle now makes the problem suitable for an iterative procedure such as
Lagrange multipliers (ref. 2). Application of Lagrange multipliers to the lift-off problem was developed in ref.
3. In the development presented here, because of the very simple assumed nature of KC (see section

2.2) Lagrange multipliers do not occur explicitly.

If _> and q are defined such that

x = d) q (4)

where _>TM q> = I
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and (])TK¢ - (02

then the modal form of the equations of motion (3) can be written as

r, o + 0 llqv 
Lo , J ,qs) Lo ¢o2jt qs)

r _J 0 1 ('F(t) / (5)

Lo _>TJko )

-rC,vr o ]r lr% o llqv/
L o _TJL JL O _sJ_,qsJ

The second term on the right hand side of the above equation is the contact force term FC. Assuming a

modal damping ratio of _ the equations can thusbe written as

+ 2_(onq + _n2q -F A * FC (6)

If the two bodies are allowed free body motionsthen the values of (on corresponding to the rigid body

modes are obviously zero. This formulation allows computer core savings because of the diagonalisation

of the mass and stiffness matrices. Only small partitions of _v and _s corresponding to the coupling
points are retained in core.

As the vehicle lifts off from the stand and contact is broken point by point, the coupling stiffness KC is
reduced until, finally, it becomes zero and the vehicle flies free.

2.2 COUPUNG STIFFNESS MATRIX KC

When the two bodies (vehicle and pad) are in contact they impose constraints on their coupled motion
which may be stated as :

a) Vehicle and pad displacements at the points of contact are equal.
b) Contact forces have values only at points which are in contact.

These constraints are most easily applied using Lagrange multipliers (refs. 1,3). Their application becomes
straightforward if a simple coupling stiffness KC is assumed.

Contact points between the vehicle and the pad are shown in figure 1. The function of the coupling
stiffness KC is merely to constrain the degrees of freedom in contact to move together. A 6 DoF stiffness

matrix (3 freedoms each for the SRB and MLP ends of the contact) can serve to provide the required
constraints for each contact point. Greater simplificationof KC is possible if no cross-coupling between the

x,y,z freedoms at each end is allowed.

An urmoupled stiffness matrix KC automatically satisfies the constraint requirements stated above, and

Lagrange multipliers do not occur explicitly inthe formulation. Values of KC must be chosen to be high

relative to the local stiffness values of the two bodies, but yet not so high as to induce spurious responses.
The use of an uncoupled stiffness matrix KC has an additional advantage in that the reduction of KC, as

the vehicle lifts off the pad, simply involves zeroing the relevant stiffness terms.
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2.3 ITERATIVE SOLUTION OF EQUATIONS OF MOTION

Suppose at a given time t = to the solution has been obtained i.e. we know qo, ¢1o

FC0 for a given applied force FA0 .

and the contact force

If h is the integration interval then at time t - to + h the new value of applied force FA is known.

Suppose the stand force needed to satisfy the equations of motion at time t - to + h is FC. Over the

interval h

The coefficients

At time I:

,Hence A

Similarly at 1:

B -

we mayapproximate the forcing function to

+ 2 _(Onq + O)n2q ,, A *

A + B'_, and the equations of motion become

B1: (7)

A and B can be obtained by comparing the above to (6).

. 0 the forcing function is FA0 and the contact force is FC0.

= FA0 + FC0 (8a)

. h, for the assumed contact force FC we can obtain B as

FA -FAo . FC-FCO (8b)
h h

Closed form solutionof equations (7) can be obtained easily interms of constants A and B. For the rigid

body modes ( (on - 0 ) the equations of motion simply are

= A + B1: (9)

Successive integration gives Cland q.

For the vibration modes of the vehicle the general solution is more complicated; it can be written as

q = e-_(Onl;[KlCOS(Od1: + K2sino)d1: ] + C + D1: (10)

where O)d " O)n_

D = B/(o 2

C - (A - 2_O)nD)lO)n 2

K1 = qo C

K2- (_io + _O)nK1 - D)I(o d

Modal velocity and acceleration can be obtained from (10).

The iterative solution procedure, therefore, is to estimate a value for the contact force at the end of the
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integration interval I; - h. Coefficients A, B can then be calculated from (8). These coefficients are

used in (9) and (10) to obtain estimated values of q. Forces and displacements at vehicle-stand interface
can then be calculated. Separation of vehicle from the stand is tested for, and a modified coupling stiffness
matrix generated. Contact force consistent withthe modified coupling stiffness matrix and vehicle
displacements is used to obtain new values for constants B which in tum yield improved estimates for q ;
the process is repeated until the stand force obtained between successive iterations is within a specified
tolerance, indicating that the solution has converged to the required accuracy.

2.4 TEST FOR CONVERGENCE

If the solution has converged, the right hand sideof equation (6) has to be equal to its left side. If the two
are not equal then the error is

11 - FA + FC - "q 2_ O)nq r._n2q

If FCi denotes the stand force estimate from the previous iteration, and FCj the stand force from the
current iteration then, substituting for _, el,and q in terms of A and B gives the error between
successive iterations as

n- FCj (11)

i.e the error in successive iterations is simply the difference in the contact force. The solution may be said
to be converged if the value of the error becomes sufficiently small; for our purposes a satisfactory error
criterion was a difference of less than 1 Ibf. between successive iterations.

2.5 DETERMINATION OF INTEGRATION STEP SIZE

Because the error between successive iterations is in the stand force the integration step size need only
be small enough to track the highest frequency in the contact force. An estimate of the oscillatory
behaviour of the vehicle on the pad is obtained by reducing the mass and stiffness properties of the two
bodies to the stand interlace points and coupling the two appropriately. The highest frequency from the
resulting eigensolution governs the integration step size :

h _; 0.25 ! fh (12)

where fh is the highest frequency so obtained.

2.6 INITIAL CONDITIONS

Initial conditions are most easily obtained by solving the static problem of the vehicle resting on the pad.
They can be compared to the response obtained from the method itself by allowing the vehicle to settle
under the action of applied static loads; mean values of the resulting oscillations should be the same as
obtained statically, providing a good check on the computer code and the models.
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2.7 SEPARATION AND RECONTACT CRITERIA

Conditions governing the behaviour of the contact points between the pad and the vehicle are easily
established when using the uncoupled stiffness matrix KC.

When the vehicle is bolted to the pad the contact point can sustain both tensile and compressive loads.
Once the SRB bolts have been fired, the contact point becomes non-linear in that no tensile loads can be
sustained. Contact between the vehicle and the pad is thus assumed broken as soon as the bolt goes into
tension.

The condition forreattachment is similarly simple. Because of the assumed nature of KC (no cross

coupling) a check of relative displacements between the two bodies shows when recontact takes place.
However on recontact, to simulate the sliding joint beteen the vehicle and the pad, only axial (normal) loads
were permitted because otherwise any lateral drift would induce spurious forces.

3.0 GENERATION OF LAUNCH ANALYSIS MODELS

Each component of the launch vehicle was modeled mass coupled in mixed modal and discrete
coordinates usingthe Craig-Bampton method (ref. 4). Using this method a set of freedoms, called the
boundary freedoms, are grounded and an eigensolution obtained of the remaining DoFs. From this eigen
a number of significant modes are retained. A dynamics model is then constructed using the retained
modes and the boundary set of retained freedoms. The resulting mass and stifffness matrices are of the
form

M = [I CM] K = lOOn2 0 "I

LCMT MB J L o KB J

(13)

Some very important points need to be noted in the generation of such models. Any freedoms which have
large concentrated loads (e.g. SSV major interfaces) must be retained as discrete. Contact points, which
require high fidelity results to properly simulate separation and recontact, must also be kept explicitly. A
reduction of the remaining degrees of freedom is permissible as indicated above using the Craig-Bampton
method, with an eigensolution and the retention of only the important modes. This mode selection is often
by simple frequency bandpass, but other criteria can be employed. Finally, since the launch vehicle will
have large rigid body motions, the stiffness of each component must be truly free-free to inhibit the
build-up of spurious forces.

Component models are assembled into a launch vehicle model by overlaying the common boundary
freedoms. The launch vehicle model is then eigensolved with properties as in equation (4) to diagonalise
the mass and stiffnessmatrices. All modes from this final eigensolution are retained for further analysis.
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4.0 EXTERNAL FORCING FUNCTIONS

Any dynamic system is subject to forcing functions which can be constant or time varying. The
determination of these forcing functions is usuallythe most difficult part of any dynamics problem. The
launch vehicle is subject to a number of external influences most of which have been refined over the
years and are well known. How these various forces are dealt with is described in this section.

4.1 DATABASE FORCING FUNCTIONS

A computer tape containing the NASA launch analysis forcing functions was obtained from MSFC. There
was data for 11 lift-off cases, comprising engine forcing functions, winds and gusts.

This forcing function data, which is standard for SSV launch analysis, was converted to generalised forcing
functions using the final free-free vehicle modal matrix. The data was read as required during the execution
of the computer program.

4.2 GRAVITY LOADS

Gravity loads can be obtained easily for the mass coupled models as generated using the Craig-Bampton
method. A geometric rigid body modeshape of the model can be constructed, bearing in mind that, since
the modes are obtained for zero boundary motion, the geometric modeshape corresponding to the modal
freedoms is zero. The gravity loads are then obtained from the mass matrix as

= r, o l{g} = rCMI[RB]{g} (14)
L CMT MB JLRB J L M B J

Thus the discrete mass of the vehicle, which causes gravity loads, is inherent in the column partition of the
mass matrix corresponding to the boundary freedoms. This method allows very easy calculation of vehicle
gravity loads.

4.3 CRYOGENIC LOADS

Cryo loads are generated at the SRB to MLP boundary because of the restraints imposed on shrinkage of
the ET as the cold propellents are loaded. As the vehicle liftsoff these restraints are removed and the
SRBs twang inwards. Any technique for cryo load application should properly simulate this behaviour.
This was achieved simply by applying the cryo loads to the ET itself such as to shrink the tank. Structural
flexibility allows the loads to be distributed properly through the vehicle, and produces the required cryo
reaction loads at the SRB base.

Since the cryo loads are a function of the structural stiffness, and are not related to the mass matrix, they
must be applied only at the discrete freedoms of the mass-coupled component modal model. Otherwise,
spurious modal distortions are obtained.

Cryo loads were assumed to be steady state andwere added to the gravity force vector to give the total
constant force on the vehicle.
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4.4 CONTROL SYSTEM

The vehicle control system directs SRB gimballing to zero out any net moments about the vehicle centre
of gravity. The formulation given in this section was developed to simulate the effect of the control system
in maintaining a vertical attitude of the launch vehicle during the first few seconds of flight.

Using the geometric rigid body modeshape RB the resultant force vector PR at the e.g. of the vehicle is

obtained from the physical applied forces PA as

PR = RBT PA (15)

This vector may be written in terms of its three force and three moment components as

PR = ("FR'_ (16)

LMR,)

The control system action is such that the resultant moments M R vanish subject to the constraint that the

con'ective forces are applied only at the lateral (y,z) freedoms at the SRB gimbals. Forces required to

produce a moment of ,. M R are obtained by relating Xsl, the SRB lateral gimbal freedoms, to the

freedoms at the e.g. of the vehicle with the geometric rigid body modeshape as

Xsl = RBL Xg

where RBL is the appropriate partition of RB. Hence we can write

Xg = (RBL T RBL)'I RBLT xsI

= T1 Xsl (17)

As only the partition of T1 corresponding to the rotational degrees of freedom (TIR) is needed to zero
out the net moments about vehicle c.g. the above can be written as

Xgr = T1R Xsl (18)

Using the corrective moment required we can obtain FSL, the SRB lateral forces, as

FSL = -T1R T MR

= -T1RT RBLT PA (19)

However, during computation, the forcing functions are known as generalised quantities. Using the final
free-free modes discrete forces can be obtained from generalised as

PA TM (_-IT FA (20)

The inverse of the modal matrix <b can be obtained easily from its properties. For mass normalised modes
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we have

_TM_-I

Hence _-1 = (_T M

thus reducing the process of inversion to that of multiplication. Now we can write the discrete SRB
corrective forces as

FSL = - TIR T RBLT _-IT FA (21)

The corrective forces FSL in equation (21) are converted to generalised forces for use in the lift-off
program.

4.5 GRAVITY SOFTENING

Because of the Offset c.g. of the vehicle, deflection of the c.g. from its null position will induce a further
bending moment in the structure, which in turn will lead to extra deflection. This effect may be viewed as a
softening of the structure under gravity loading and could be important as the vehicle rocks on the pad
when the Space Shuttle main engines (SSMEs) are lit.

Implementation of the gravity softening effect was as for the control system. As before we can relate the
motion of the vehicle c.g. to the motion of the boundary freedoms xb using the rigid body mode shape

Xb., RBxg

Hence Xg = (RBT RB)-1 RBT xb

= T2 xb (22)

This relationship is assumed to hold even for the deformed vehicle i.e. for small deflections.

Using the final free-free modes of the vehicle the boundary freedoms are related to the modes as

Xb ,, <[:_oq

where _)b is the partition of the modal matrix corresponding to the boundary freedoms. Hence the motion

of the c.g. is obtained in terms of modal freedoms as

Xg = T2d_oq

= ERV q (23)
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The translational and rotational components of c.g. motion can be written as

(xgt' - I'ERVtl(q}

_Xgr) LERVr J

(24)

The translational deflection Xgt obtained from the above equation causes an additional moment because
of the motion ofthe centre of gravity (gravity force application point). This moment may be written in matrix
Iorm as

r o -FGZ FGY]{ Xgt }
I FGZ 0 -FGXI
L -FGY FGX 0 .J

= FGM Xgt (25)

Using the relationships developed in (24) and (25) the generalised moment due to deflection of the c.g. is
given by

FSOF = ERVrT M G

= ERVrT FGM ERVt q (26)

The "softening stiffness" is thus obtained as

KSOF = ERVrT FGM ERVt (27)

For static calculation of initial conditions KSOF is used in conjunction with the linear elastic stiffness of the
vehicle to obtain extra deflection because of its off-set centre of gravity. The effect of gravity softening on
the deflection of the vehicle c.g. is shown in table 1.

In the response calculations the softening effect is considered to be an extra applied force and is carried
on the right hand side of the equations of motion. This force is obtained from equation (26) above; if the
matrix multiplications are carried out from the right the process is very quick and requires just the small
amount of core needed by ERV and FGM.To avoid numerical stability problems FSOF was considered to
be constant over an integration interval (typically 0.0001 sec.).

The gravity softening effect was turned off at SRB ignition.

5.0 APPLICATIONS AND RESULTS

The computer code generated with this methodology has been used in a number of diverse applications.
The main effortwas inobtaining launch loads for a SSV with an Aft Cargo Carrier attached to the aft frame of
the El'; the payload inthe ACC was an Orbital Transfer Vehicle (OTV). Figure 2 is an illustartionof the
ACC-OTV concept. Figure 3 shows one of the loads responses between the ET and the aft SRB
attachment. Loads generated on an OTV propellent tank are shown in figure 4. The hydroelastic volume
change in the ullage space of the liquid oxygen tank of the ET due to the lift-off transient is shown in figure
5; the oscillation in the tank bottom pressure is shown in figure 6. The primary mode in both these
phenomenon isthe 4Hz first bulge mode of the tank. Figures 3-6 illustrate the severity of response when
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the SRBs are lit ( 6.6 sec inthe plots). These responses correlate well with the results obtained by other
independent analyses.

The program was used to calculate barge impact loads and ET response during docking procedures in the
harbour at VAFB. A sketch of the barge and the dock is shown in figures 7 and 8. It was assumed that the
barge had an initialvelocity imparted by a wave. The barge was then allowed to impact a dock of various
stiffness values. It was found that the loads generated at the ET transporter interfaces were acceptable
even for severe impact cases. The dock impact loads were governed by the barge stiffness for a stiff dock,
and by the dock stiffness for a soft dock.The impact wave as it travels through the deck of the barge is
shown in figure 9.

6.0 CONCLUDING REMARKS

Results obtained by the method developed in this paper have been shown to be in good agreement with
observed loads and other analysis methods.

The resulting computer program has general applicability, and has been used without modification to
solve a variety of contact problems. The contact point description could be made more elaborate to include
effects of friction, geometry, etc. By allowing the second body (it need not be a pad) to have rigid body
free-free modes other problems, such as berthing/docking dynamics, could be tackled.

i
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TABLE 1

VEHICLE C.G. MOTIONS UNDER STATIC LOADS

1)

2)

3)

4)

G_VITYO_Y

(_) + G-SOFTENING

C) + CRYO

(_) + G-SOFTENING + CRYO

X

(in)

-1.174

-I.179

0.184

0.181

Y

(in)

-0.053

-0.058

-0.050

-0.057

Z

(in)

-1.531

-1.726

-0.923

-1.060

188



Y

FIGURE 1 TOP SIDE VIEW OF THE SPACE SHUTTLE VEHICLE
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AFT CARGO CARRIER CONCEPT

FIGURE 2
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