347 research outputs found

    Attributing sense to some integrals in Regge calculus

    Full text link
    Regge calculus minisuperspace action in the connection representation has the form in which each term is linear over some field variable (scale of area-type variable with sign). We are interested in the result of performing integration over connections in the path integral (now usual multiple integral) as function of area tensors even in larger region considered as independent variables. To find this function (or distribution), we compute its moments, i. e. integrals with monomials over area tensors. Calculation proceeds through intermediate appearance of δ\delta-functions and integrating them out. Up to a singular part with support on some discrete set of physically unattainable points, the function of interest has finite moments. This function in physical region should therefore exponentially decay at large areas and it really does being restored from moments. This gives for gravity a way of defining such nonabsolutely convergent integral as path integral.Comment: 14 pages, presentation improve

    Spin foam models and the Wheeler-DeWitt equation for the quantum 4-simplex

    Full text link
    The asymptotics of some spin foam amplitudes for a quantum 4-simplex is known to display rapid oscillations whose frequency is the Regge action. In this note, we reformulate this result through a difference equation, asymptotically satisfied by these models, and whose semi-classical solutions are precisely the sine and the cosine of the Regge action. This equation is then interpreted as coming from the canonical quantization of a simple constraint in Regge calculus. This suggests to lift and generalize this constraint to the phase space of loop quantum gravity parametrized by twisted geometries. The result is a reformulation of the flat model for topological BF theory from the Hamiltonian perspective. The Wheeler-de-Witt equation in the spin network basis gives difference equations which are exactly recursion relations on the 15j-symbol. Moreover, the semi-classical limit is investigated using coherent states, and produces the expected results. It mimics the classical constraint with quantized areas, and for Regge geometries it reduces to the semi-classical equation which has been introduced in the beginning.Comment: 16 pages, the new title is that of the published version (initial title: A taste of Hamiltonian constraint in spin foam models

    Pushing Further the Asymptotics of the 6j-symbol

    Full text link
    In the context of spinfoam models for quantum gravity, we investigate the asymptotical behavior of the 6j-symbol at next-to-leading order. We compute it analytically and check our results against numerical calculations. The 6j-symbol is the building block of the Ponzano-Regge amplitudes for 3d quantum gravity, and the present analysis is directly relevant to deriving the quantum corrections to gravitational correlations in the spinfoam formalism.Comment: 16 page

    Quantum Field Theory of Open Spin Networks and New Spin Foam Models

    Get PDF
    We describe how a spin-foam state sum model can be reformulated as a quantum field theory of spin networks, such that the Feynman diagrams of that field theory are the spin-foam amplitudes. In the case of open spin networks, we obtain a new type of state-sum models, which we call the matter spin foam models. In this type of state-sum models, one labels both the faces and the edges of the dual two-complex for a manifold triangulation with the simple objects from a tensor category. In the case of Lie groups, such a model corresponds to a quantization of a theory whose fields are the principal bundle connection and the sections of the associated vector bundles. We briefly discuss the relevance of the matter spin foam models for quantum gravity and for topological quantum field theories.Comment: 13 pages, based on the talk given at the X-th Oporto Meeting on Geometry, Physics and Topology, Porto, September 20-24, 200

    3d Quantum Gravity and Effective Non-Commutative Quantum Field Theory

    Full text link
    We show that the effective dynamics of matter fields coupled to 3d quantum gravity is described after integration over the gravitational degrees of freedom by a braided non-commutative quantum field theory symmetric under a kappa-deformation of the Poincare group.Comment: 4 pages, to appear in Phys. Rev. Letters, Proceedings of the conference "Quantum Theory and Symmetries 4" 2005 (Varna, Bulgaria), v2: some clarifications on the Feynman propagator and slight change in titl

    Gauge symmetries in spinfoam gravity: the case for "cellular quantization"

    Full text link
    The spinfoam approach to quantum gravity rests on a "quantization" of BF theory using 2-complexes and group representations. We explain why, in dimension three and higher, this "spinfoam quantization" must be amended to be made consistent with the gauge symmetries of discrete BF theory. We discuss a suitable generalization, called "cellular quantization", which (1) is finite, (2) produces a topological invariant, (3) matches with the properties of the continuum BF theory, (4) corresponds to its loop quantization. These results significantly clarify the foundations - and limitations - of the spinfoam formalism, and open the path to understanding, in a discrete setting, the symmetry-breaking which reduces BF theory to gravity.Comment: 6 page

    On the exact evaluation of spin networks

    Full text link
    We introduce a fully coherent spin network amplitude whose expansion generates all SU(2) spin networks associated with a given graph. We then give an explicit evaluation of this amplitude for an arbitrary graph. We show how this coherent amplitude can be obtained from the specialization of a generating functional obtained by the contraction of parametrized intertwiners a la Schwinger. We finally give the explicit evaluation of this generating functional for arbitrary graphs

    How to detect an anti-spacetime

    Full text link
    Is it possible, in principle, to measure the sign of the Lapse? We show that fermion dynamics distinguishes spacetimes having the same metric but different tetrads, for instance a Lapse with opposite sign. This sign might be a physical quantity not captured by the metric. We discuss its possible role in quantum gravity.Comment: Article awarded with an "Honorable Mention" from the 2012 Gravity Foundation Award. 6 pages, 8 (pretty) figure

    Topological low-temperature limit of Z(2) spin-gauge theory in three dimensions

    Get PDF
    We study Z(2) lattice gauge theory on triangulations of a compact 3-manifold. We reformulate the theory algebraically, describing it in terms of the structure constants of a bidimensional vector space H equipped with algebra and coalgebra structures, and prove that in the low-temperature limit H reduces to a Hopf Algebra, in which case the theory becomes equivalent to a topological field theory. The degeneracy of the ground state is shown to be a topological invariant. This fact is used to compute the zeroth- and first-order terms in the low-temperature expansion of Z for arbitrary triangulations. In finite temperatures, the algebraic reformulation gives rise to new duality relations among classical spin models, related to changes of basis of H.Comment: 10 pages, no figure

    Towards the graviton from spinfoams: higher order corrections in the 3d toy model

    Full text link
    We consider the recent calculation gr-qc/0508124 of the graviton propagator in the spinfoam formalism. Within the 3d toy model introduced in gr-qc/0512102, we test how the spinfoam formalism can be used to construct the perturbative expansion of graviton amplitudes. Although the 3d graviton is a pure gauge, one can choose to work in a gauge where it is not zero and thus reproduce the structure of the 4d perturbative calculations. We compute explicitly the next to leading and next to next to leading orders, corresponding to one-loop and two-loop corrections. We show that while the first arises entirely from the expansion of the Regge action around the flat background, the latter receives contributions from the microscopic, non Regge-like, quantum geometry. Surprisingly, this new contribution reduces the magnitude of the next to next to leading order. It thus appears that the spinfoam formalism is likely to substantially modify the conventional perturbative expansion at higher orders. This result supports the interest in this approach. We then address a number of open issues in the rest of the paper. First, we discuss the boundary state ansatz, which is a key ingredient in the whole construction. We propose a way to enhance the ansatz in order to make the edge lengths and dihedral angles conjugate variables in a mathematically well-defined way. Second, we show that the leading order is stable against different choices of the face weights of the spinfoam model; the next to leading order, on the other hand, is changed in a simple way, and we show that the topological face weight minimizes it. Finally, we extend the leading order result to the case of a regular, but not equilateral, tetrahedron.Comment: 24 pages, many figure
    • …
    corecore