106 research outputs found

    Surface-structure libraries: multifrequential oscillations in catalytic hydrogen oxidation on rhodium

    Get PDF
    Multifrequential oscillating spatiotemporal patterns in the catalytic hydrogen oxidation on rhodium have been observed in situ in the 10 -6 mbar pressure range using photoemission electron microscopy. The effect is manifested by periodic chemical waves, which travel over the polycrystalline Rh surface and change their oscillation frequency while crossing boundaries between different Rh(hkl) domains. Each crystallographically specific μm-sized Rh(hkl) domain exhibits an individual wave pattern and oscillation frequency, despite the global diffusional coupling of the surface reaction, altogether creating a structure library. This unique reaction behavior is attributed to the ability of stepped surfaces of high-Miller-index domains to facilitate the formation of subsurface oxygen, serving as a feedback mechanism of kinetic oscillations. Formation of a network of subsurface oxygen as a result of colliding reaction fronts was observed in situ. Microkinetic model analysis was used to rationalize the observed effects and to reveal the relation between the barriers for surface oxidation and oscillation frequency. Structural limits of the oscillations, the existence range of oscillations, as well as the effect of varying hydrogen pressure are demonstrated

    High-resolution topochemical analysis and thermochemical simulations of oxides and nitrides at grain boundaries and within the grains of a low alloy Mn-Cr hot-rolled steel sheet

    Get PDF
    The selective oxidation underneath the scale layer of an industrially hot rolled Fe-1.8Mn-0.8Cr steel at temperatures between 600-700∘C has been investigated. The spatial distribution and composition of formed precipitates has been studied by high-resolution topochemical analysis via TEM-EELS and NanoSIMS and revealed heterogeneities in chemical composition, especially along grain boundaries. It could be shown that grain boundary oxides are predominantly composed of aluminium, chromium or silicon oxides/nitrides, surrounded by manganese-rich oxides. Experimental results of phase stability have been compared to numerical simulations, considering the distribution of more than 40 potentially stable oxide-, nitride- and carbide phases and differences are critically discussed

    Coexisting multi-states in catalytic hydrogen oxidation on rhodium

    Get PDF
    Catalytic hydrogen oxidation on a polycrystalline rhodium foil used as a surface structure library is studied by scanning photoelectron microscopy (SPEM) in the 10−6 mbar pressure range, yielding spatially resolved X-ray photoemission spectroscopy (XPS) measurements. Here we report an observation of a previously unknown coexistence of four different states on adjacent differently oriented domains of the same Rh sample at the exactly same conditions. A catalytically active steady state, a catalytically inactive steady state and multifrequential oscillating states are simultaneously observed. Our results thus demonstrate the general possibility of multi-states in a catalytic reaction. This highly unusual behaviour is explained on the basis of peculiarities of the formation and depletion of subsurface oxygen on differently structured Rh surfaces. The experimental findings are supported by mean-field micro-kinetic modelling. The present observations raise the interdisciplinary question of how self-organising dynamic processes in a heterogeneous system are influenced by the permeability of the borders confining the adjacent regions

    Pattern Formation in Catalytic H<sub>2</sub> Oxidation on Rh: Zooming in by Correlative Microscopy

    Get PDF
    Spatio-temporal nonuniformities in H2 oxidation on individual Rh(h k l) domains of a polycrystalline Rh foil were studied in the 10–6 mbar pressure range by photoemission electron microscopy (PEEM), X-ray photoemission electron microscopy (XPEEM), and low-energy electron microscopy (LEEM). The latter two were used for in situ correlative microscopy to zoom in with significantly higher lateral resolution, allowing detection of an unusual island-mediated oxygen front propagation during kinetic transitions. The origin of the island-mediated front propagation was rationalized by model calculations based on a hybrid approach of microkinetic modeling and Monte Carlo simulations

    Surface-Energy Control and Characterization of Nanoparticle Coatings

    Get PDF
    Accurate and reproducible measurement of the structure and properties of high-value nanoparticles is extremely important for their commercialization. A significant proportion of engineered nanoparticle systems consist of some form of nominally core\u2013shell structure, whether by design or unintentionally. Often, these do not form an ideal core\u2013shell structure, with typical deviations including polydispersity of the core or shell, uneven or incomplete shells, noncentral cores, and others. Such systems may be created with or without intent, and in either case an understanding of the conditions for formation of such particles is desirable. Precise determination of the structure, composition, size, and shell thickness of such particles can prove challenging without the use of a suitable range of characterization techniques. Here, the authors present two such polymer core\u2013shell nanoparticle systems, consisting of polytetrafluoroethylene cores coated with a range of thicknesses of either polymethylmethacrylate or polystyrene. By consideration of surface energy, it is shown that these particles are expected to possess distinctly differing coating structures, with the polystyrene coating being incomplete. A comprehensive characterization of these systems is demonstrated, using a selection of complementary techniques including scanning electron microscopy, scanning transmission electron microscopy, thermogravimetric analysis, dynamic light scattering, differential centrifugal sedimentation, and X-ray photoelectron spectroscopy. By combining the results provided by these techniques, it is possible to achieve superior characterization and understanding of the particle structure than could be obtained by considering results separately

    Visualizing catalyst heterogeneity by a multifrequencial oscillating reaction

    Get PDF
    It is well documented that different surface structures of catalytically active metals may exhibit different catalytic properties. This is typically examined by comparing the catalytic activities and/or selectivities of various well-defined smooth and stepped/kinked single crystal surfaces. Here we report the direct observation of the heterogeneity of active polycrystalline surfaces under reaction conditions, which is manifested by multifrequential\ua0oscillations during hydrogen oxidation over rhodium, imaged in situ by photoemission electron microscopy. Each specific surface structure, i.e. the crystallographically different \ub5m-sized domains of rhodium, exhibits an individual spiral pattern and oscillation frequency, despite the global diffusional coupling of the surface reaction. This reaction behavior is attributed to the ability of stepped surfaces of high-Miller-index domains to facilitate the formation of subsurface oxygen, serving as feedback mechanism of the observed oscillations. The current experimental findings, backed by microkinetic modeling, may open an alternative approach towards addressing the structure-sensitivity of heterogeneous surfaces
    • …
    corecore