44 research outputs found

    Search for the standard model Higgs boson at LEP

    Get PDF

    Guaranteeing Syntactic Correctness for all Product Line Variants: A Language-Independent Approach

    No full text
    Abstract. A software product line (SPL) is a family of related program variants in a well-defined domain, generated from a set of features. A fundamental difference from classical application development is that engineers develop not a single program but a whole family with hundreds to millions of variants. This makes it infeasible to separately check every distinct variant for errors. Still engineers want guarantees on the entire SPL. A further challenge is that an SPL may contain artifacts in different languages (code, documentation, models, etc.) that should be checked. In this paper, we present CIDE, an SPL development tool that guarantees syntactic correctness for all variants of an SPL. We show how CIDE’s underlying mechanism abstracts from textual representation and we generalize it to arbitrary languages. Furthermore, we automate the generation of plug-ins for additional languages from annotated grammars. To demonstrate the language-independent capabilities, we applied CIDE to a series of case studies with artifacts written in Java, C++, C, Haskell, ANTLR, HTML, and XML.

    Neue Systeme zur Antikörperherstellung

    No full text

    Variation Programming with the Choice Calculus ⋆

    No full text
    Abstract. The choice calculus provides a language for representing and transforming variation in software and other structured documents. Variability is captured in localized choices between alternatives. The space of all variations is organized by dimensions, which provide scoping and structure to choices. The variation space can be reduced through a process of selection, which eliminates a dimension and resolves all of its associated choices by replacing each with one of their alternatives. The choice calculus also allows the definition of arbitrary functions for the flexible construction and transformation of all kinds of variation structures. In this tutorial we will first present the motivation, general ideas, and principles that underlie the choice calculus. This is followed by a closer look at the semantics. We will then present practical applications based on several small example scenarios and consider the concepts of ”variation programming ” and ”variation querying”. The practical applications involve work with a Haskell library that supports variation programming and experimentation with the choice calculus.
    corecore