1,834 research outputs found

    Dynamical r-process studies within the neutrino-driven wind scenario and its sensitivity to the nuclear physics input

    Full text link
    We use results from long-time core-collapse supernovae simulations to investigate the impact of the late time evolution of the ejecta and of the nuclear physics input on the calculated r-process abundances. Based on the latest hydrodynamical simulations, heavy r-process elements cannot be synthesized in the neutrino-driven winds that follow the supernova explosion. However, by artificially increasing the wind entropy, elements up to A=195 can be made. In this way one can reproduce the typical behavior of high-entropy ejecta where the r-process is expected to occur. We identify which nuclear physics input is more important depending on the dynamical evolution of the ejecta. When the evolution proceeds at high temperatures (hot r-process), an (n,g)-(g,n) equilibrium is reached. While at low temperature (cold r-process) there is a competition between neutron captures and beta decays. In the first phase of the r-process, while enough neutrons are available, the most relevant nuclear physics input are the nuclear masses for the hot r-process and the neutron capture and beta-decay rates for the cold r-process. At the end of this phase, the abundances follow a steady beta flow for the hot r-process and a steady flow of neutron captures and beta decays for the cold r-process. After neutrons are almost exhausted, matter decays to stability and our results show that in both cases neutron captures are key for determining the final abundances, the position of the r-process peaks, and the formation of the rare-earth peak. In all the cases studied, we find that the freeze out occurs in a timescale of several seconds.Comment: 20 pages, 12 figures, submitted to Phys. Rev. C (improved version

    Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis

    Full text link
    The description of nuclear reactions induced by supernova neutrinos has witnessed significant progress during the recent years. At the energies and momentum transfers relevant for supernova neutrinos neutrino-nucleus cross sections are dominated by allowed transitions, however, often with non-negligible contributions from (first) forbidden transitions. For several nuclei allowed Gamow-Teller strength distributions could be derived from charge-exchange reactions and from inelastic electron scattering data. Importantly the diagonalization shell model has been proven to accurately describe these data and hence became the appropriate tool to calculate the allowed contributions to neutrino-nucleus cross sections for supernova neutrinos. Higher multipole contributions are usually calculated within the framework of the Quasiparticle Random Phase Approximation, which describes the total strength and the position of the giant resonances quite well. This manuscript reviews the recent progress achieved in calculating supernova-relevant neutrino-nucleus cross sections and discusses its verification by data. Moreover, the review summarizes also the impact which neutrino-nucleus reactions have on the dynamics of supernovae and on the associated nucleosynthesis. These include the absorption of neutrinos by nuclei (the inverse of nuclear electron capture which is the dominating weak-interaction process during collapse), inelastic neutrino-nucleus scattering and nuclear de-excitation by neutrino-pair emission. We also discuss the role of neutrino-induced reactions for the recently discovered νp\nu p process, for the r-process and for the neutrino process, for which neutrino-nucleus reactions have the largest impact. Finally, we briefly review neutrino-nucleus reactions important for the observation of supernova neutrinos by earthbound detectors. (Abridged)Comment: 77 pages, 29 figures, 4 tables, submitted to Progress in Particle and Nuclear Physic

    Supernova neutrinos and nucleosynthesis

    Full text link
    Observations of metal-poor stars indicate that at least two different nucleosynthesis sites contribute to the production of r-process elements. One site is responsible for the production of light r-process elements Z<~50 while the other produces the heavy r-process elements. We have analyzed recent observations of metal-poor stars selecting only stars that are enriched in light r-process elements and poor in heavy r-process elements. We find a strong correlation between the observed abundances of the N=50 elements (Sr, Y and Zr) and Fe. It suggest that neutrino-driven winds from core-collapse supernova are the main site for the production of these elements. We explore this possibility by performing nucleosynthesis calculations based on long term Boltzmann neutrino transport simulations. They are based on an Equation of State that reproduces recent constrains on the nuclear symmetry energy. We predict that the early ejecta is neutron-rich with Ye ~ 0.48, it becomes proton rich around 4 s and reaches Ye = 0.586 at 9 s when our simulation stops. The nucleosynthesis in this model produces elements between Zn and Mo, including 92Mo. The elemental abundances are consistent with the observations of the metal-poor star HD 12263. For the elements between Ge and Mo, we produce mainly the neutron-deficient isotopes. This prediction can be confirmed by observations of isotopic abundances in metal-poor stars. No elements heavier than Mo (Z=42) and no heavy r-process elements are produced in our calculations.Comment: 18 pages, 5 figures, submitted to J. Phys. G: Nucl. Part. Phys. (Focus issue "Nucleosynthesis and the role of neutrinos", ed. Baha Balantekin and Cristina Volpe
    • …
    corecore